chgrdj commited on
Commit
9c38bab
·
verified ·
1 Parent(s): 9b1ca0b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -12,7 +12,7 @@ model = SentenceTransformer(model_name)
12
  domains_df = pd.read_csv('domains_embs.csv')
13
  domains_df.embedding = domains_df.embedding.apply(literal_eval)
14
  corpus_domains = domains_df.domain.to_list()
15
- corpus_embeddings = np.stack(domains_df.embedding.values)
16
 
17
  # Streamlit App
18
  st.title("Mining Potential Legitimate Domains from a Typosquatted Domain")
@@ -26,7 +26,7 @@ top_k = st.number_input("Top K Results", min_value=1, max_value=len(corpus_domai
26
  if st.button("Search for Legitimate Domains"):
27
  if domain:
28
  # Perform Semantic Search
29
- query_emb = model.encode(domain)
30
  semantic_res = util.semantic_search(query_emb, corpus_embeddings, top_k=top_k)[0]
31
  ids = [r['corpus_id'] for r in semantic_res]
32
  scores = [r['score'] for r in semantic_res]
 
12
  domains_df = pd.read_csv('domains_embs.csv')
13
  domains_df.embedding = domains_df.embedding.apply(literal_eval)
14
  corpus_domains = domains_df.domain.to_list()
15
+ corpus_embeddings = np.stack(domains_df.embedding.values).astype(np.float32) # Ensure embeddings are float32
16
 
17
  # Streamlit App
18
  st.title("Mining Potential Legitimate Domains from a Typosquatted Domain")
 
26
  if st.button("Search for Legitimate Domains"):
27
  if domain:
28
  # Perform Semantic Search
29
+ query_emb = model.encode(domain).astype(np.float32) # Ensure query embedding is also float32
30
  semantic_res = util.semantic_search(query_emb, corpus_embeddings, top_k=top_k)[0]
31
  ids = [r['corpus_id'] for r in semantic_res]
32
  scores = [r['score'] for r in semantic_res]