Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,7 @@ def load_model():
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
13 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
14 |
model = PeftModel.from_pretrained(model, adapter_path)
|
|
|
15 |
model.eval()
|
16 |
|
17 |
return model, tokenizer
|
@@ -21,21 +22,13 @@ model, tokenizer = load_model()
|
|
21 |
st.title("FLAN-T5 Typosquatting Detection")
|
22 |
st.write("Enter a potential typosquatted domain and a target domain to check if one is a variant of the other.")
|
23 |
|
24 |
-
# Non-editable prompt part
|
25 |
prompt_prefix = "Is the first domain a typosquat of the second:"
|
26 |
|
27 |
-
# Display the non-editable prompt with input fields for the rest
|
28 |
-
st.markdown("### Prompt")
|
29 |
-
st.text_area("Prompt", prompt_prefix, height=68, disabled=True)
|
30 |
-
|
31 |
-
# User inputs for dynamic part of the prompt
|
32 |
potential_typosquat = st.text_input("Potential Typosquatted Domain", value="lonlonsoft.com")
|
33 |
target_domain = st.text_input("Legitimate Domain", value="stiltsoft.net")
|
34 |
|
35 |
-
# Generate prompt by combining fixed and dynamic parts
|
36 |
full_prompt = f"{prompt_prefix} {potential_typosquat} {target_domain}"
|
37 |
|
38 |
-
# Perform inference when button is clicked
|
39 |
if st.button("Check Typosquatting"):
|
40 |
if potential_typosquat and target_domain:
|
41 |
# Encode and generate response
|
@@ -46,7 +39,7 @@ if st.button("Check Typosquatting"):
|
|
46 |
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
|
48 |
# Display the result
|
49 |
-
st.write("**Prediction
|
50 |
st.write(prediction)
|
51 |
else:
|
52 |
st.warning("Please enter both domains to perform the check.")
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
13 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
14 |
model = PeftModel.from_pretrained(model, adapter_path)
|
15 |
+
model = model.merge_and_unload()
|
16 |
model.eval()
|
17 |
|
18 |
return model, tokenizer
|
|
|
22 |
st.title("FLAN-T5 Typosquatting Detection")
|
23 |
st.write("Enter a potential typosquatted domain and a target domain to check if one is a variant of the other.")
|
24 |
|
|
|
25 |
prompt_prefix = "Is the first domain a typosquat of the second:"
|
26 |
|
|
|
|
|
|
|
|
|
|
|
27 |
potential_typosquat = st.text_input("Potential Typosquatted Domain", value="lonlonsoft.com")
|
28 |
target_domain = st.text_input("Legitimate Domain", value="stiltsoft.net")
|
29 |
|
|
|
30 |
full_prompt = f"{prompt_prefix} {potential_typosquat} {target_domain}"
|
31 |
|
|
|
32 |
if st.button("Check Typosquatting"):
|
33 |
if potential_typosquat and target_domain:
|
34 |
# Encode and generate response
|
|
|
39 |
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
|
41 |
# Display the result
|
42 |
+
st.write("**Prediction: **")
|
43 |
st.write(prediction)
|
44 |
else:
|
45 |
st.warning("Please enter both domains to perform the check.")
|