Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from telegram import Bot, Update
|
3 |
+
from telegram.ext import CommandHandler, MessageHandler, Filters, Updater, CallbackContext
|
4 |
+
|
5 |
+
# Initialize your Telegram bot
|
6 |
+
bot = Bot(token="6516533220:AAEoq0ohv4xAraIw7lB7BZVHKyUg85wo3mI")
|
7 |
+
|
8 |
+
# Define a Gradio interface for your machine learning model
|
9 |
+
def predict_text(text):
|
10 |
+
# Replace this with your model's prediction logic
|
11 |
+
prediction = "Your model's prediction: " + text
|
12 |
+
return prediction
|
13 |
+
|
14 |
+
iface = gr.Interface(fn=predict_text, inputs="text", outputs="text")
|
15 |
+
|
16 |
+
# Define a command handler for the Telegram bot
|
17 |
+
def start(update: Update, context: CallbackContext):
|
18 |
+
update.message.reply_text("Welcome to your bot! Send me text for predictions.")
|
19 |
+
|
20 |
+
# Define a message handler for the Telegram bot
|
21 |
+
def handle_message(update: Update, context: CallbackContext):
|
22 |
+
user_text = update.message.text
|
23 |
+
prediction = predict_text(user_text)
|
24 |
+
update.message.reply_text(prediction)
|
25 |
+
|
26 |
+
# Initialize the Telegram bot updater
|
27 |
+
updater = Updater(token="YOUR_TELEGRAM_BOT_TOKEN", use_context=True)
|
28 |
+
dispatcher = updater.dispatcher
|
29 |
+
|
30 |
+
# Register command and message handlers
|
31 |
+
dispatcher.add_handler(CommandHandler("start", start))
|
32 |
+
dispatcher.add_handler(MessageHandler(Filters.text & ~Filters.command, handle_message))
|
33 |
+
|
34 |
+
# Start both the Gradio interface and the Telegram bot
|
35 |
+
iface.launch(share=True)
|
36 |
+
updater.start_polling()
|
37 |
+
updater.idle()
|