Spaces:
Sleeping
Sleeping
| import torch | |
| import numpy as np | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import torch.nn.functional as F | |
| import spacy | |
| from typing import List, Dict | |
| import logging | |
| import os | |
| import gradio as gr | |
| # Configure logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Constants | |
| MAX_LENGTH = 512 | |
| MODEL_NAME = "microsoft/deberta-v3-small" | |
| WINDOW_SIZE = 17 | |
| WINDOW_OVERLAP = 2 | |
| CONFIDENCE_THRESHOLD = 0.65 | |
| BATCH_SIZE = 16 | |
| class TextWindowProcessor: | |
| def __init__(self): | |
| try: | |
| self.nlp = spacy.load("en_core_web_sm") | |
| except OSError: | |
| logger.info("Downloading spacy model...") | |
| spacy.cli.download("en_core_web_sm") | |
| self.nlp = spacy.load("en_core_web_sm") | |
| if 'sentencizer' not in self.nlp.pipe_names: | |
| self.nlp.add_pipe('sentencizer') | |
| disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer'] | |
| self.nlp.disable_pipes(*disabled_pipes) | |
| def split_into_sentences(self, text: str) -> List[str]: | |
| doc = self.nlp(text) | |
| return [str(sent).strip() for sent in doc.sents] | |
| def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]: | |
| """Create overlapping windows for quick scan mode.""" | |
| if len(sentences) < window_size: | |
| return [" ".join(sentences)] | |
| windows = [] | |
| stride = window_size - overlap | |
| for i in range(0, len(sentences) - window_size + 1, stride): | |
| window = sentences[i:i + window_size] | |
| windows.append(" ".join(window)) | |
| return windows | |
| def create_centered_windows(self, sentences: List[str], window_size: int) -> tuple[List[str], List[List[int]]]: | |
| """Create centered windows for detailed analysis mode.""" | |
| windows = [] | |
| window_sentence_indices = [] | |
| for i in range(len(sentences)): | |
| half_window = window_size // 2 | |
| start_idx = max(0, i - half_window) | |
| end_idx = min(len(sentences), i + half_window + 1) | |
| if start_idx == 0: | |
| end_idx = min(len(sentences), window_size) | |
| elif end_idx == len(sentences): | |
| start_idx = max(0, len(sentences) - window_size) | |
| window = sentences[start_idx:end_idx] | |
| windows.append(" ".join(window)) | |
| window_sentence_indices.append(list(range(start_idx, end_idx))) | |
| return windows, window_sentence_indices | |
| class TextClassifier: | |
| def __init__(self): | |
| self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| self.model_name = MODEL_NAME | |
| self.tokenizer = None | |
| self.model = None | |
| self.processor = TextWindowProcessor() | |
| self.initialize_model() | |
| def initialize_model(self): | |
| """Initialize the model and tokenizer.""" | |
| logger.info("Initializing model and tokenizer...") | |
| from transformers import DebertaV2TokenizerFast | |
| self.tokenizer = DebertaV2TokenizerFast.from_pretrained( | |
| self.model_name, | |
| model_max_length=MAX_LENGTH, | |
| use_fast=False, | |
| from_slow=True | |
| ) | |
| self.model = AutoModelForSequenceClassification.from_pretrained( | |
| self.model_name, | |
| num_labels=2 | |
| ).to(self.device) | |
| model_path = "model_20250209_184929_acc1.0000.pt" | |
| if os.path.exists(model_path): | |
| logger.info(f"Loading custom model from {model_path}") | |
| checkpoint = torch.load(model_path, map_location=self.device) | |
| self.model.load_state_dict(checkpoint['model_state_dict']) | |
| else: | |
| logger.warning("Custom model file not found. Using base model.") | |
| self.model.eval() | |
| def quick_scan(self, text: str) -> Dict: | |
| """Perform a quick scan using simple window analysis.""" | |
| if not text.strip(): | |
| return { | |
| 'prediction': 'unknown', | |
| 'confidence': 0.0, | |
| 'num_windows': 0 | |
| } | |
| sentences = self.processor.split_into_sentences(text) | |
| windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP) | |
| predictions = [] | |
| # Process windows in batches | |
| for i in range(0, len(windows), BATCH_SIZE): | |
| batch_windows = windows[i:i + BATCH_SIZE] | |
| inputs = self.tokenizer( | |
| batch_windows, | |
| truncation=True, | |
| padding=True, | |
| max_length=MAX_LENGTH, | |
| return_tensors="pt" | |
| ).to(self.device) | |
| with torch.no_grad(): | |
| outputs = self.model(**inputs) | |
| probs = F.softmax(outputs.logits, dim=-1) | |
| for idx, window in enumerate(batch_windows): | |
| prediction = { | |
| 'window': window, | |
| 'human_prob': probs[idx][1].item(), | |
| 'ai_prob': probs[idx][0].item(), | |
| 'prediction': 'human' if probs[idx][1] > probs[idx][0] else 'ai' | |
| } | |
| predictions.append(prediction) | |
| # Calculate aggregate prediction | |
| if not predictions: | |
| return { | |
| 'prediction': 'unknown', | |
| 'confidence': 0.0, | |
| 'num_windows': 0 | |
| } | |
| avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions) | |
| avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions) | |
| return { | |
| 'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai', | |
| 'confidence': max(avg_human_prob, avg_ai_prob), | |
| 'num_windows': len(predictions) | |
| } | |
| def detailed_scan(self, text: str) -> Dict: | |
| """Perform a detailed scan with sentence-level analysis.""" | |
| if not text.strip(): | |
| return { | |
| 'sentence_predictions': [], | |
| 'highlighted_text': '', | |
| 'full_text': '', | |
| 'overall_prediction': { | |
| 'prediction': 'unknown', | |
| 'confidence': 0.0, | |
| 'num_sentences': 0 | |
| } | |
| } | |
| sentences = self.processor.split_into_sentences(text) | |
| if not sentences: | |
| return {} | |
| # Create centered windows for each sentence | |
| windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE) | |
| # Track scores for each sentence | |
| sentence_appearances = {i: 0 for i in range(len(sentences))} | |
| sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))} | |
| # Process windows in batches | |
| for i in range(0, len(windows), BATCH_SIZE): | |
| batch_windows = windows[i:i + BATCH_SIZE] | |
| batch_indices = window_sentence_indices[i:i + BATCH_SIZE] | |
| inputs = self.tokenizer( | |
| batch_windows, | |
| truncation=True, | |
| padding=True, | |
| max_length=MAX_LENGTH, | |
| return_tensors="pt" | |
| ).to(self.device) | |
| with torch.no_grad(): | |
| outputs = self.model(**inputs) | |
| probs = F.softmax(outputs.logits, dim=-1) | |
| for window_idx, indices in enumerate(batch_indices): | |
| for sent_idx in indices: | |
| sentence_appearances[sent_idx] += 1 | |
| sentence_scores[sent_idx]['human_prob'] += probs[window_idx][1].item() | |
| sentence_scores[sent_idx]['ai_prob'] += probs[window_idx][0].item() | |
| # Average the scores and create final sentence-level predictions | |
| sentence_predictions = [] | |
| for i in range(len(sentences)): | |
| if sentence_appearances[i] > 0: | |
| human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i] | |
| ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i] | |
| sentence_predictions.append({ | |
| 'sentence': sentences[i], | |
| 'human_prob': human_prob, | |
| 'ai_prob': ai_prob, | |
| 'prediction': 'human' if human_prob > ai_prob else 'ai', | |
| 'confidence': max(human_prob, ai_prob) | |
| }) | |
| return { | |
| 'sentence_predictions': sentence_predictions, | |
| 'highlighted_text': self.format_predictions_html(sentence_predictions), | |
| 'full_text': text, | |
| 'overall_prediction': self.aggregate_predictions(sentence_predictions) | |
| } | |
| def format_predictions_html(self, sentence_predictions: List[Dict]) -> str: | |
| """Format predictions as HTML with color-coding.""" | |
| html_parts = [] | |
| for pred in sentence_predictions: | |
| sentence = pred['sentence'] | |
| confidence = pred['confidence'] | |
| if confidence >= CONFIDENCE_THRESHOLD: | |
| if pred['prediction'] == 'human': | |
| color = "#90EE90" # Light green | |
| else: | |
| color = "#FFB6C6" # Light red | |
| else: | |
| if pred['prediction'] == 'human': | |
| color = "#E8F5E9" # Very light green | |
| else: | |
| color = "#FFEBEE" # Very light red | |
| html_parts.append(f'<span style="background-color: {color};">{sentence}</span>') | |
| return " ".join(html_parts) | |
| def aggregate_predictions(self, predictions: List[Dict]) -> Dict: | |
| """Aggregate predictions from multiple sentences into a single prediction.""" | |
| if not predictions: | |
| return { | |
| 'prediction': 'unknown', | |
| 'confidence': 0.0, | |
| 'num_sentences': 0 | |
| } | |
| total_human_prob = sum(p['human_prob'] for p in predictions) | |
| total_ai_prob = sum(p['ai_prob'] for p in predictions) | |
| num_sentences = len(predictions) | |
| avg_human_prob = total_human_prob / num_sentences | |
| avg_ai_prob = total_ai_prob / num_sentences | |
| return { | |
| 'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai', | |
| 'confidence': max(avg_human_prob, avg_ai_prob), | |
| 'num_sentences': num_sentences | |
| } | |
| def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple: | |
| """Analyze text using specified mode and return formatted results.""" | |
| if mode == "quick": | |
| # Quick scan | |
| result = classifier.quick_scan(text) | |
| quick_analysis = f""" | |
| PREDICTION: {result['prediction'].upper()} | |
| Confidence: {result['confidence']*100:.1f}% | |
| Windows analyzed: {result['num_windows']} | |
| """ | |
| return ( | |
| text, # No highlighting in quick mode | |
| "Quick scan mode - no sentence-level analysis available", | |
| quick_analysis | |
| ) | |
| else: | |
| # Detailed scan | |
| analysis = classifier.detailed_scan(text) | |
| # Format sentence-by-sentence analysis | |
| detailed_analysis = [] | |
| for pred in analysis['sentence_predictions']: | |
| confidence = pred['confidence'] * 100 | |
| detailed_analysis.append(f"Sentence: {pred['sentence']}") | |
| detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}") | |
| detailed_analysis.append(f"Confidence: {confidence:.1f}%") | |
| detailed_analysis.append("-" * 50) | |
| # Format overall prediction | |
| final_pred = analysis['overall_prediction'] | |
| overall_result = f""" | |
| FINAL PREDICTION: {final_pred['prediction'].upper()} | |
| Overall confidence: {final_pred['confidence']*100:.1f}% | |
| Number of sentences analyzed: {final_pred['num_sentences']} | |
| """ | |
| return ( | |
| analysis['highlighted_text'], | |
| "\n".join(detailed_analysis), | |
| overall_result | |
| ) | |
| # Initialize the classifier globally | |
| classifier = TextClassifier() | |
| # Create Gradio interface | |
| demo = gr.Interface( | |
| fn=lambda text, mode: analyze_text(text, mode, classifier), | |
| inputs=[ | |
| gr.Textbox( | |
| lines=8, | |
| placeholder="Enter text to analyze...", | |
| label="Input Text" | |
| ), | |
| gr.Radio( | |
| choices=["quick", "detailed"], | |
| value="quick", | |
| label="Analysis Mode", | |
| info="Quick mode for faster analysis, Detailed mode for sentence-level analysis" | |
| ) | |
| ], | |
| outputs=[ | |
| gr.HTML(label="Highlighted Analysis"), | |
| gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10), | |
| gr.Textbox(label="Overall Result", lines=4) | |
| ], | |
| title="AI Text Detector", | |
| description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis.", | |
| examples=[ | |
| ["This is a sample text written by a human. It contains multiple sentences with different ideas. The analysis will show how each sentence is classified.", "quick"], | |
| ["This is a sample text written by a human. It contains multiple sentences with different ideas. The analysis will show how each sentence is classified.", "detailed"], | |
| ], | |
| api_name="predict", | |
| allow_flagging="never" | |
| ) | |
| # Launch the interface | |
| if __name__ == "__main__": | |
| demo.queue() # Enable queuing | |
| demo.launch( | |
| server_name="0.0.0.0", # Allow external connections | |
| server_port=7860, | |
| share=False, # Don't use share since you're on Spaces | |
| api_open=True # This is important - it enables the API endpoints | |
| ) |