Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import numpy as np
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
import torch.nn.functional as F
|
| 5 |
import spacy
|
| 6 |
-
from typing import List, Dict
|
| 7 |
import logging
|
| 8 |
import os
|
| 9 |
import gradio as gr
|
|
@@ -51,22 +51,25 @@ class TextWindowProcessor:
|
|
| 51 |
windows.append(" ".join(window))
|
| 52 |
return windows
|
| 53 |
|
| 54 |
-
def create_centered_windows(self, sentences: List[str], window_size: int) ->
|
| 55 |
-
"""Create windows
|
| 56 |
windows = []
|
| 57 |
window_sentence_indices = []
|
| 58 |
-
|
| 59 |
for i in range(len(sentences)):
|
| 60 |
-
# Calculate window boundaries centered on current sentence
|
| 61 |
half_window = window_size // 2
|
| 62 |
start_idx = max(0, i - half_window)
|
| 63 |
end_idx = min(len(sentences), i + half_window + 1)
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
window = sentences[start_idx:end_idx]
|
| 67 |
windows.append(" ".join(window))
|
| 68 |
window_sentence_indices.append(list(range(start_idx, end_idx)))
|
| 69 |
-
|
| 70 |
return windows, window_sentence_indices
|
| 71 |
|
| 72 |
class TextClassifier:
|
|
@@ -163,7 +166,7 @@ class TextClassifier:
|
|
| 163 |
}
|
| 164 |
|
| 165 |
def detailed_scan(self, text: str) -> Dict:
|
| 166 |
-
"""Perform a detailed scan with sentence-level analysis
|
| 167 |
if not text.strip():
|
| 168 |
return {
|
| 169 |
'sentence_predictions': [],
|
|
@@ -175,26 +178,23 @@ class TextClassifier:
|
|
| 175 |
'num_sentences': 0
|
| 176 |
}
|
| 177 |
}
|
| 178 |
-
|
| 179 |
sentences = self.processor.split_into_sentences(text)
|
| 180 |
if not sentences:
|
| 181 |
return {}
|
| 182 |
-
|
| 183 |
# Create centered windows for each sentence
|
| 184 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 185 |
-
|
| 186 |
# Track scores for each sentence
|
| 187 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 188 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 189 |
-
|
| 190 |
-
#
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
batch_indices = window_sentence_indices[i:batch_end]
|
| 196 |
-
|
| 197 |
-
# Process batch more efficiently
|
| 198 |
inputs = self.tokenizer(
|
| 199 |
batch_windows,
|
| 200 |
truncation=True,
|
|
@@ -202,60 +202,23 @@ class TextClassifier:
|
|
| 202 |
max_length=MAX_LENGTH,
|
| 203 |
return_tensors="pt"
|
| 204 |
).to(self.device)
|
| 205 |
-
|
| 206 |
with torch.no_grad():
|
| 207 |
outputs = self.model(**inputs)
|
| 208 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 209 |
-
|
| 210 |
-
# Attribute predictions with center-weighted approach
|
| 211 |
for window_idx, indices in enumerate(batch_indices):
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
window_ai_prob = probs[window_idx][0].item()
|
| 219 |
-
|
| 220 |
-
for pos, sent_idx in enumerate(indices):
|
| 221 |
-
# Apply higher weight to center sentence
|
| 222 |
-
weight = center_weight if pos == center_idx else edge_weight
|
| 223 |
-
sentence_appearances[sent_idx] += weight
|
| 224 |
-
sentence_scores[sent_idx]['human_prob'] += weight * window_human_prob
|
| 225 |
-
sentence_scores[sent_idx]['ai_prob'] += weight * window_ai_prob
|
| 226 |
-
|
| 227 |
-
# Clean up GPU memory more aggressively
|
| 228 |
-
del inputs, outputs, probs
|
| 229 |
-
if torch.cuda.is_available():
|
| 230 |
-
torch.cuda.empty_cache()
|
| 231 |
-
|
| 232 |
-
# Calculate final predictions with boundary smoothing
|
| 233 |
sentence_predictions = []
|
| 234 |
for i in range(len(sentences)):
|
| 235 |
if sentence_appearances[i] > 0:
|
| 236 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 237 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 238 |
-
|
| 239 |
-
# Apply minimal smoothing at prediction boundaries
|
| 240 |
-
if i > 0 and i < len(sentences) - 1:
|
| 241 |
-
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 242 |
-
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 243 |
-
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 244 |
-
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 245 |
-
|
| 246 |
-
# Check if we're at a prediction boundary
|
| 247 |
-
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 248 |
-
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 249 |
-
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 250 |
-
|
| 251 |
-
if current_pred != prev_pred or current_pred != next_pred:
|
| 252 |
-
# Small adjustment at boundaries
|
| 253 |
-
smooth_factor = 0.1
|
| 254 |
-
human_prob = (human_prob * (1 - smooth_factor) +
|
| 255 |
-
(prev_human + next_human) * smooth_factor / 2)
|
| 256 |
-
ai_prob = (ai_prob * (1 - smooth_factor) +
|
| 257 |
-
(prev_ai + next_ai) * smooth_factor / 2)
|
| 258 |
-
|
| 259 |
sentence_predictions.append({
|
| 260 |
'sentence': sentences[i],
|
| 261 |
'human_prob': human_prob,
|
|
@@ -263,13 +226,14 @@ class TextClassifier:
|
|
| 263 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 264 |
'confidence': max(human_prob, ai_prob)
|
| 265 |
})
|
| 266 |
-
|
| 267 |
return {
|
| 268 |
'sentence_predictions': sentence_predictions,
|
| 269 |
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
| 270 |
'full_text': text,
|
| 271 |
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 272 |
}
|
|
|
|
| 273 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
| 274 |
"""Format predictions as HTML with color-coding."""
|
| 275 |
html_parts = []
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
import torch.nn.functional as F
|
| 5 |
import spacy
|
| 6 |
+
from typing import List, Dict
|
| 7 |
import logging
|
| 8 |
import os
|
| 9 |
import gradio as gr
|
|
|
|
| 51 |
windows.append(" ".join(window))
|
| 52 |
return windows
|
| 53 |
|
| 54 |
+
def create_centered_windows(self, sentences: List[str], window_size: int) -> tuple[List[str], List[List[int]]]:
|
| 55 |
+
"""Create centered windows for detailed analysis mode."""
|
| 56 |
windows = []
|
| 57 |
window_sentence_indices = []
|
| 58 |
+
|
| 59 |
for i in range(len(sentences)):
|
|
|
|
| 60 |
half_window = window_size // 2
|
| 61 |
start_idx = max(0, i - half_window)
|
| 62 |
end_idx = min(len(sentences), i + half_window + 1)
|
| 63 |
+
|
| 64 |
+
if start_idx == 0:
|
| 65 |
+
end_idx = min(len(sentences), window_size)
|
| 66 |
+
elif end_idx == len(sentences):
|
| 67 |
+
start_idx = max(0, len(sentences) - window_size)
|
| 68 |
+
|
| 69 |
window = sentences[start_idx:end_idx]
|
| 70 |
windows.append(" ".join(window))
|
| 71 |
window_sentence_indices.append(list(range(start_idx, end_idx)))
|
| 72 |
+
|
| 73 |
return windows, window_sentence_indices
|
| 74 |
|
| 75 |
class TextClassifier:
|
|
|
|
| 166 |
}
|
| 167 |
|
| 168 |
def detailed_scan(self, text: str) -> Dict:
|
| 169 |
+
"""Perform a detailed scan with sentence-level analysis."""
|
| 170 |
if not text.strip():
|
| 171 |
return {
|
| 172 |
'sentence_predictions': [],
|
|
|
|
| 178 |
'num_sentences': 0
|
| 179 |
}
|
| 180 |
}
|
| 181 |
+
|
| 182 |
sentences = self.processor.split_into_sentences(text)
|
| 183 |
if not sentences:
|
| 184 |
return {}
|
| 185 |
+
|
| 186 |
# Create centered windows for each sentence
|
| 187 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 188 |
+
|
| 189 |
# Track scores for each sentence
|
| 190 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 191 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 192 |
+
|
| 193 |
+
# Process windows in batches
|
| 194 |
+
for i in range(0, len(windows), BATCH_SIZE):
|
| 195 |
+
batch_windows = windows[i:i + BATCH_SIZE]
|
| 196 |
+
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
|
| 197 |
+
|
|
|
|
|
|
|
|
|
|
| 198 |
inputs = self.tokenizer(
|
| 199 |
batch_windows,
|
| 200 |
truncation=True,
|
|
|
|
| 202 |
max_length=MAX_LENGTH,
|
| 203 |
return_tensors="pt"
|
| 204 |
).to(self.device)
|
| 205 |
+
|
| 206 |
with torch.no_grad():
|
| 207 |
outputs = self.model(**inputs)
|
| 208 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 209 |
+
|
|
|
|
| 210 |
for window_idx, indices in enumerate(batch_indices):
|
| 211 |
+
for sent_idx in indices:
|
| 212 |
+
sentence_appearances[sent_idx] += 1
|
| 213 |
+
sentence_scores[sent_idx]['human_prob'] += probs[window_idx][1].item()
|
| 214 |
+
sentence_scores[sent_idx]['ai_prob'] += probs[window_idx][0].item()
|
| 215 |
+
|
| 216 |
+
# Average the scores and create final sentence-level predictions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
sentence_predictions = []
|
| 218 |
for i in range(len(sentences)):
|
| 219 |
if sentence_appearances[i] > 0:
|
| 220 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 221 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
sentence_predictions.append({
|
| 223 |
'sentence': sentences[i],
|
| 224 |
'human_prob': human_prob,
|
|
|
|
| 226 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 227 |
'confidence': max(human_prob, ai_prob)
|
| 228 |
})
|
| 229 |
+
|
| 230 |
return {
|
| 231 |
'sentence_predictions': sentence_predictions,
|
| 232 |
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
| 233 |
'full_text': text,
|
| 234 |
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 235 |
}
|
| 236 |
+
|
| 237 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
| 238 |
"""Format predictions as HTML with color-coding."""
|
| 239 |
html_parts = []
|