Update ProcessVideo.py
Browse files- ProcessVideo.py +71 -57
ProcessVideo.py
CHANGED
@@ -1,57 +1,71 @@
|
|
1 |
-
import cv2
|
2 |
-
from Prediction import predict_fight # Assuming you have this
|
3 |
-
|
4 |
-
# Process video: read, predict, and output labeled video
|
5 |
-
def process_video(video_path):
|
6 |
-
cap = cv2.VideoCapture(video_path)
|
7 |
-
sequence_length = 40 # Number of frames for one prediction
|
8 |
-
all_frames = []
|
9 |
-
predictions = []
|
10 |
-
|
11 |
-
# Step 1: Read all frames from the video
|
12 |
-
while cap.isOpened():
|
13 |
-
ret, frame = cap.read()
|
14 |
-
if not ret:
|
15 |
-
break
|
16 |
-
all_frames.append(frame)
|
17 |
-
cap.release()
|
18 |
-
|
19 |
-
# Step 2: Process frames in chunks of 40 to make predictions
|
20 |
-
for i in range(0, len(all_frames), sequence_length):
|
21 |
-
frames_buffer = all_frames[i:i + sequence_length] # Get a batch of 40 frames
|
22 |
-
|
23 |
-
# If the number of frames is less than 40 at the end, pad it with the last frame
|
24 |
-
if len(frames_buffer) < sequence_length:
|
25 |
-
frames_buffer += [frames_buffer[-1]] * (sequence_length - len(frames_buffer))
|
26 |
-
|
27 |
-
# Perform the prediction on the current batch of frames
|
28 |
-
fight_detected = predict_fight(frames_buffer)
|
29 |
-
|
30 |
-
# Store the prediction for this batch
|
31 |
-
predictions.append(fight_detected)
|
32 |
-
|
33 |
-
# Step 3: Create output video with labels
|
34 |
-
output_video_path = "output_labeled.mp4"
|
35 |
-
height, width, _ = all_frames[0].shape
|
36 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
37 |
-
out = cv2.VideoWriter(output_video_path, fourcc, 30, (width, height)) # Adjust frame rate if needed
|
38 |
-
|
39 |
-
frame_idx = 0
|
40 |
-
for pred in predictions:
|
41 |
-
label = "Violence Detected!" if pred else "No Violence"
|
42 |
-
color = (0, 0, 255) if pred else (0, 255, 0)
|
43 |
-
|
44 |
-
# For the next 40 frames, show the same label
|
45 |
-
for _ in range(sequence_length):
|
46 |
-
if frame_idx >= len(all_frames):
|
47 |
-
break
|
48 |
-
|
49 |
-
frame = all_frames[frame_idx]
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from Prediction import predict_fight # Assuming you have this
|
3 |
+
|
4 |
+
# Process video: read, predict, and output labeled video
|
5 |
+
def process_video(video_path):
|
6 |
+
cap = cv2.VideoCapture(video_path)
|
7 |
+
sequence_length = 40 # Number of frames for one prediction
|
8 |
+
all_frames = []
|
9 |
+
predictions = []
|
10 |
+
|
11 |
+
# Step 1: Read all frames from the video
|
12 |
+
while cap.isOpened():
|
13 |
+
ret, frame = cap.read()
|
14 |
+
if not ret:
|
15 |
+
break
|
16 |
+
all_frames.append(frame)
|
17 |
+
cap.release()
|
18 |
+
|
19 |
+
# Step 2: Process frames in chunks of 40 to make predictions
|
20 |
+
for i in range(0, len(all_frames), sequence_length):
|
21 |
+
frames_buffer = all_frames[i:i + sequence_length] # Get a batch of 40 frames
|
22 |
+
|
23 |
+
# If the number of frames is less than 40 at the end, pad it with the last frame
|
24 |
+
if len(frames_buffer) < sequence_length:
|
25 |
+
frames_buffer += [frames_buffer[-1]] * (sequence_length - len(frames_buffer))
|
26 |
+
|
27 |
+
# Perform the prediction on the current batch of frames
|
28 |
+
fight_detected = predict_fight(frames_buffer)
|
29 |
+
|
30 |
+
# Store the prediction for this batch
|
31 |
+
predictions.append(fight_detected)
|
32 |
+
|
33 |
+
# Step 3: Create output video with labels
|
34 |
+
output_video_path = "output_labeled.mp4"
|
35 |
+
height, width, _ = all_frames[0].shape
|
36 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
37 |
+
out = cv2.VideoWriter(output_video_path, fourcc, 30, (width, height)) # Adjust frame rate if needed
|
38 |
+
|
39 |
+
frame_idx = 0
|
40 |
+
for pred in predictions:
|
41 |
+
label = "Violence Detected!" if pred else "No Violence"
|
42 |
+
color = (0, 0, 255) if pred else (0, 255, 0)
|
43 |
+
|
44 |
+
# For the next 40 frames, show the same label
|
45 |
+
for _ in range(sequence_length):
|
46 |
+
if frame_idx >= len(all_frames):
|
47 |
+
break
|
48 |
+
|
49 |
+
frame = all_frames[frame_idx]
|
50 |
+
|
51 |
+
# Increase the font size
|
52 |
+
font_scale = 1.5 # You can adjust this for size
|
53 |
+
thickness = 3 # You can adjust this for thickness
|
54 |
+
|
55 |
+
# Get the text size for centering
|
56 |
+
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)[0]
|
57 |
+
|
58 |
+
# Calculate the position to center the text
|
59 |
+
text_x = (width - text_size[0]) // 2
|
60 |
+
text_y = (height + text_size[1]) // 2 # Adjust for vertical centering
|
61 |
+
|
62 |
+
# Add label to the frame in the center
|
63 |
+
cv2.putText(frame, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, font_scale, color, thickness)
|
64 |
+
|
65 |
+
out.write(frame)
|
66 |
+
frame_idx += 1
|
67 |
+
|
68 |
+
out.release()
|
69 |
+
|
70 |
+
return output_video_path
|
71 |
+
|