File size: 9,272 Bytes
325895a
c3cc0a9
 
325895a
c3cc0a9
 
 
325895a
 
 
034f7bd
c3cc0a9
034f7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
---
title: Hostel Management System
emoji: 🏨
colorFrom: blue
colorTo: green
sdk: docker
app_port: 7860
pinned: false
---

# Hostel Grievance Redressal System

## Overview

The Hostel Grievance Redressal System is designed to efficiently manage and resolve grievances raised by residents. By leveraging AI/ML functionalities, the system aims to enhance communication, streamline grievance handling, and provide timely resolutions. This document outlines the implementation plans for various AI/ML features, system architecture, and usage instructions.

---

## Table of Contents

1. [System Architecture Overview](#system-architecture-overview)
2. [AI/ML Functionalities](#aiml-functionalities)
   - [1. Intelligent Routing and Workflow Automation](#1-intelligent-routing-and-workflow-automation)
   - [2. Advanced Sentiment and Emotional Intelligence Analysis](#2-advanced-sentiment-and-emotional-intelligence-analysis)
   - [3. Multilingual Translation in Chatroom](#3-multilingual-translation-in-chatroom)
   - [4. Worker Job Recommendation](#4-worker-job-recommendation)
3. [Directory Structure](#directory-structure)
4. [Conclusion](#conclusion)
5. [License](#license)
6. [Contact](#contact)

---

## System Architecture Overview

The Hostel Grievance Redressal System is built as a centralized Flask API server that hosts all AI/ML models. This architecture allows different services and applications to interact with the models by sending HTTP requests containing input data and receiving model predictions in response. Each AI/ML functionality is exposed through distinct endpoints, enabling modularity and scalability.

### Key Components

1. **Flask API Server**
   - Central hub for all AI/ML models.
   - RESTful API design for standardized interactions.
   - Authentication and authorization mechanisms.

2. **Model Endpoints**
   - `/api/intelligent-routing` - Endpoint for intelligent routing and workflow automation.
   - `/api/sentiment-analysis` - Endpoint for advanced sentiment and emotional intelligence analysis.
   - `/api/multilingual-translation` - Endpoint for multilingual translation in chatroom.
   - `/api/job-recommendation` - Endpoint for worker job recommendation.

3. **Data Handling and Validation**
   - Input validation using libraries like `pydantic` or `marshmallow`.

4. **Scalability and Deployment**
   - Docker for containerization.

---

## AI/ML Functionalities

### 1. Intelligent Routing and Workflow Automation

**Purpose:** Efficiently assign grievances to the most suitable personnel or department based on various factors.

**Model Design Pipeline:**
- Data Collection: Grievance data, staff data, historical assignments.
- Data Preprocessing: Cleaning, feature engineering, encoding.
- Model Selection: Reinforcement Learning (RL) and Multi-Criteria Decision-Making (MCDM).
- Training and Evaluation: Define environment, implement reward functions, and evaluate using metrics like resolution time.

**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/intelligent-routing`

**Example Input:**
```json
{
  "grievance_id": "G12346",
  "category": "electricity",
  "submission_timestamp": "2023-10-02T08:15:00Z",
  "student_room_no": "204",
  "hostel_name": "bh2",
  "floor_number": 2,
  "current_staff_status": [
    {
      "staff_id": "S67890",
      "department": "electricity",
      "current_workload": 3,
      "availability_status": "Available",
      "past_resolution_rate": 0.95
    },
    {
      "staff_id": "S67891",
      "department": "plumber",
      "current_workload": 2,
      "availability_status": "Available",
      "past_resolution_rate": 0.90
    }
  ],
  "floor_metrics": {
    "number_of_requests": 15,
    "total_delays": 1
  },
  "availability_data": {
    "staff_availability": [
      {
        "staff_id": "S67890",
        "time_slot": "08:00-12:00",
        "availability_status": "Available"
      }
    ],
    "student_availability": [
      {
        "student_id": "STU204",
        "time_slot": "08:00-10:00",
        "availability_status": "Unavailable"
      }
    ]
  }
}
```

**Example Output:**
```json
{
  "job_id": "J12346",
  "assigned_worker_id": "W67890",
  "assignment_timestamp": "2023-10-02T08:16:00Z",
  "expected_resolution_time": "1 hour",
  "location": {
  "grievance_id": "G12346",
  "assigned_staff_id": "S67890",
  ...
}
```

---
### 2. Advanced Sentiment and Emotional Intelligence Analysis

**Purpose:** Detect complex emotional states in grievances to enhance responses from administrators.

**Model Design Pipeline:**
- Data Collection: Grievance texts and emotional labels.
- Data Preprocessing: Text cleaning, tokenization, and normalization.
- Model Selection: Transformer-based models like BERT.

**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/sentiment-analysis`

**Example Input:**
```json
{
  "grievance_id": "G12349",
  "text": "Why hasn't the maintenance team fixed the leaking roof yet?"
}
```

**Example Output:**
```json
{
  "grievance_id": "G12349",
  "predicted_emotional_label": "Anger",
  ...
}
```

---

### 3. Multilingual Translation in Chatroom

**Purpose:** Facilitate communication between residents and workers who speak different languages.

**Model Design Pipeline:**
- Data Collection: Multilingual conversation logs and translation pairs.
- Data Preprocessing: Cleaning, tokenization, and alignment.
- Model Selection: Neural Machine Translation (NMT) models.

**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/multilingual-translation`

**Example Input:**
```json
{
  "user_message": "toilet me paani nahi aa rha hain",
  "source_language": "Hindi",
  "target_language": "English"
}
```

**Example Output:**
```json
{
  "translated_message": "There is no water coming in the toilet."
}
```

---

### 4. Worker Job Recommendation

**Purpose:** Optimize job assignments to workers based on various factors.

**Model Design Pipeline:**
- Data Collection: Job requests, worker profiles, historical assignments.
- Data Preprocessing: Cleaning, feature engineering, encoding.
- Model Selection: Collaborative Filtering and Decision Trees.

**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/job-recommendation`

**Example Input:**
```json
{
  "job_id": "J12346",
  "type": "Electrical",
  "description": "Fan not working in room 204.",
  "urgency_level": "High",
  "submission_timestamp": "2023-10-02T08:15:00Z",
  "hostel_name": "Hostel A",
  "floor_number": 2,
  "room_number": "204"
}
```

**Example Output:**
```json
{
  "job_id": "J12346",
  "assigned_worker_id": "W67890",
  "current_timestamp": "2023-10-02T08:30:00Z",
  "expected_resolution_time": "2023-10-02T10:00:00Z",
  "location": {
    "hostel_name": "Hostel A",
    "floor_number": 2,
    "room_number": "210"
  }
}
```

---

# Directory Structure

```
πŸ“ config
  πŸ“„ __init__.py
  πŸ“„ config.py
πŸ“ docs
  πŸ“„ README.md
  πŸ“„ ai_plan.md
  πŸ“„ data_plan.md
  πŸ“„ plan.md
πŸ“ models
  πŸ“ intelligent_routing
    πŸ“ saved_model
      πŸ“„ model.keras
    πŸ“ test_data
      πŸ“„ __init__.py
      πŸ“„ test_data.json
    πŸ“ test_results
      πŸ“„ confusion_matrix.png
      πŸ“„ roc_curve.png
      πŸ“„ test_report.json
    πŸ“ train_data
      πŸ“„ __init__.py
      πŸ“„ training_data.json
    πŸ“„ generate_data.py
    πŸ“„ model.py
    πŸ“„ test_model.py
    πŸ“„ train.py
  πŸ“ job_recommendation
    πŸ“ saved_model
      πŸ“„ model.keras
    πŸ“ test_data
      πŸ“„ __init__.py
      πŸ“„ test_data.json
    πŸ“ test_results
      πŸ“„ test_report.json
    πŸ“ train_data
      πŸ“„ __init__.py
      πŸ“„ training_data.json
    πŸ“„ generate_data.py
    πŸ“„ model.py
    πŸ“„ test.py
    πŸ“„ train.py
  πŸ“ multilingual_translation
    πŸ“ test_data
      πŸ“„ __init__.py
      πŸ“„ test_data.json
    πŸ“ test_results
      πŸ“„ test_report.json
    πŸ“ train_data
      πŸ“„ __init__.py
      πŸ“„ training_data.json
    πŸ“„ model.py
    πŸ“„ test_model.py
  πŸ“ sentiment_analysis
    πŸ“ test_data
      πŸ“„ __init__.py
      πŸ“„ test_data.json
    πŸ“ test_results
      πŸ“„ test_report.json
    πŸ“ train_data
      πŸ“„ __init__.py
      πŸ“„ training_data.json
    πŸ“„ model.py
    πŸ“„ test_model.py
πŸ“ test_results
  πŸ“„ endpoint_test_results.json
πŸ“ utils
  πŸ“„ __init__.py
  πŸ“„ logger.py
πŸ“„ .env
πŸ“„ .gitignore
πŸ“„ app.py
πŸ“„ readme.md
πŸ“„ requirements.txt
πŸ“„ routes.py
πŸ“„ test_endpoints.py
```
---

> To test the application, you can use the `test_endpoints.py` script, which provides a convenient way to verify the functionality of the API endpoints.


## Conclusion

Implementing these AI/ML functionalities will significantly enhance the efficiency and effectiveness of the Hostel Grievance Redressal System. By leveraging advanced technologies and integrating them within a Flask API framework, the system will provide a more responsive, empathetic, and proactive approach to managing resident grievances.

---

## License

This project is licensed under the [MIT License](LICENSE).

## Contact

For any questions or feedback, please contact [[email protected]](mailto:[email protected]).