File size: 9,272 Bytes
325895a c3cc0a9 325895a c3cc0a9 325895a 034f7bd c3cc0a9 034f7bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
---
title: Hostel Management System
emoji: π¨
colorFrom: blue
colorTo: green
sdk: docker
app_port: 7860
pinned: false
---
# Hostel Grievance Redressal System
## Overview
The Hostel Grievance Redressal System is designed to efficiently manage and resolve grievances raised by residents. By leveraging AI/ML functionalities, the system aims to enhance communication, streamline grievance handling, and provide timely resolutions. This document outlines the implementation plans for various AI/ML features, system architecture, and usage instructions.
---
## Table of Contents
1. [System Architecture Overview](#system-architecture-overview)
2. [AI/ML Functionalities](#aiml-functionalities)
- [1. Intelligent Routing and Workflow Automation](#1-intelligent-routing-and-workflow-automation)
- [2. Advanced Sentiment and Emotional Intelligence Analysis](#2-advanced-sentiment-and-emotional-intelligence-analysis)
- [3. Multilingual Translation in Chatroom](#3-multilingual-translation-in-chatroom)
- [4. Worker Job Recommendation](#4-worker-job-recommendation)
3. [Directory Structure](#directory-structure)
4. [Conclusion](#conclusion)
5. [License](#license)
6. [Contact](#contact)
---
## System Architecture Overview
The Hostel Grievance Redressal System is built as a centralized Flask API server that hosts all AI/ML models. This architecture allows different services and applications to interact with the models by sending HTTP requests containing input data and receiving model predictions in response. Each AI/ML functionality is exposed through distinct endpoints, enabling modularity and scalability.
### Key Components
1. **Flask API Server**
- Central hub for all AI/ML models.
- RESTful API design for standardized interactions.
- Authentication and authorization mechanisms.
2. **Model Endpoints**
- `/api/intelligent-routing` - Endpoint for intelligent routing and workflow automation.
- `/api/sentiment-analysis` - Endpoint for advanced sentiment and emotional intelligence analysis.
- `/api/multilingual-translation` - Endpoint for multilingual translation in chatroom.
- `/api/job-recommendation` - Endpoint for worker job recommendation.
3. **Data Handling and Validation**
- Input validation using libraries like `pydantic` or `marshmallow`.
4. **Scalability and Deployment**
- Docker for containerization.
---
## AI/ML Functionalities
### 1. Intelligent Routing and Workflow Automation
**Purpose:** Efficiently assign grievances to the most suitable personnel or department based on various factors.
**Model Design Pipeline:**
- Data Collection: Grievance data, staff data, historical assignments.
- Data Preprocessing: Cleaning, feature engineering, encoding.
- Model Selection: Reinforcement Learning (RL) and Multi-Criteria Decision-Making (MCDM).
- Training and Evaluation: Define environment, implement reward functions, and evaluate using metrics like resolution time.
**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/intelligent-routing`
**Example Input:**
```json
{
"grievance_id": "G12346",
"category": "electricity",
"submission_timestamp": "2023-10-02T08:15:00Z",
"student_room_no": "204",
"hostel_name": "bh2",
"floor_number": 2,
"current_staff_status": [
{
"staff_id": "S67890",
"department": "electricity",
"current_workload": 3,
"availability_status": "Available",
"past_resolution_rate": 0.95
},
{
"staff_id": "S67891",
"department": "plumber",
"current_workload": 2,
"availability_status": "Available",
"past_resolution_rate": 0.90
}
],
"floor_metrics": {
"number_of_requests": 15,
"total_delays": 1
},
"availability_data": {
"staff_availability": [
{
"staff_id": "S67890",
"time_slot": "08:00-12:00",
"availability_status": "Available"
}
],
"student_availability": [
{
"student_id": "STU204",
"time_slot": "08:00-10:00",
"availability_status": "Unavailable"
}
]
}
}
```
**Example Output:**
```json
{
"job_id": "J12346",
"assigned_worker_id": "W67890",
"assignment_timestamp": "2023-10-02T08:16:00Z",
"expected_resolution_time": "1 hour",
"location": {
"grievance_id": "G12346",
"assigned_staff_id": "S67890",
...
}
```
---
### 2. Advanced Sentiment and Emotional Intelligence Analysis
**Purpose:** Detect complex emotional states in grievances to enhance responses from administrators.
**Model Design Pipeline:**
- Data Collection: Grievance texts and emotional labels.
- Data Preprocessing: Text cleaning, tokenization, and normalization.
- Model Selection: Transformer-based models like BERT.
**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/sentiment-analysis`
**Example Input:**
```json
{
"grievance_id": "G12349",
"text": "Why hasn't the maintenance team fixed the leaking roof yet?"
}
```
**Example Output:**
```json
{
"grievance_id": "G12349",
"predicted_emotional_label": "Anger",
...
}
```
---
### 3. Multilingual Translation in Chatroom
**Purpose:** Facilitate communication between residents and workers who speak different languages.
**Model Design Pipeline:**
- Data Collection: Multilingual conversation logs and translation pairs.
- Data Preprocessing: Cleaning, tokenization, and alignment.
- Model Selection: Neural Machine Translation (NMT) models.
**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/multilingual-translation`
**Example Input:**
```json
{
"user_message": "toilet me paani nahi aa rha hain",
"source_language": "Hindi",
"target_language": "English"
}
```
**Example Output:**
```json
{
"translated_message": "There is no water coming in the toilet."
}
```
---
### 4. Worker Job Recommendation
**Purpose:** Optimize job assignments to workers based on various factors.
**Model Design Pipeline:**
- Data Collection: Job requests, worker profiles, historical assignments.
- Data Preprocessing: Cleaning, feature engineering, encoding.
- Model Selection: Collaborative Filtering and Decision Trees.
**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/job-recommendation`
**Example Input:**
```json
{
"job_id": "J12346",
"type": "Electrical",
"description": "Fan not working in room 204.",
"urgency_level": "High",
"submission_timestamp": "2023-10-02T08:15:00Z",
"hostel_name": "Hostel A",
"floor_number": 2,
"room_number": "204"
}
```
**Example Output:**
```json
{
"job_id": "J12346",
"assigned_worker_id": "W67890",
"current_timestamp": "2023-10-02T08:30:00Z",
"expected_resolution_time": "2023-10-02T10:00:00Z",
"location": {
"hostel_name": "Hostel A",
"floor_number": 2,
"room_number": "210"
}
}
```
---
# Directory Structure
```
π config
π __init__.py
π config.py
π docs
π README.md
π ai_plan.md
π data_plan.md
π plan.md
π models
π intelligent_routing
π saved_model
π model.keras
π test_data
π __init__.py
π test_data.json
π test_results
π confusion_matrix.png
π roc_curve.png
π test_report.json
π train_data
π __init__.py
π training_data.json
π generate_data.py
π model.py
π test_model.py
π train.py
π job_recommendation
π saved_model
π model.keras
π test_data
π __init__.py
π test_data.json
π test_results
π test_report.json
π train_data
π __init__.py
π training_data.json
π generate_data.py
π model.py
π test.py
π train.py
π multilingual_translation
π test_data
π __init__.py
π test_data.json
π test_results
π test_report.json
π train_data
π __init__.py
π training_data.json
π model.py
π test_model.py
π sentiment_analysis
π test_data
π __init__.py
π test_data.json
π test_results
π test_report.json
π train_data
π __init__.py
π training_data.json
π model.py
π test_model.py
π test_results
π endpoint_test_results.json
π utils
π __init__.py
π logger.py
π .env
π .gitignore
π app.py
π readme.md
π requirements.txt
π routes.py
π test_endpoints.py
```
---
> To test the application, you can use the `test_endpoints.py` script, which provides a convenient way to verify the functionality of the API endpoints.
## Conclusion
Implementing these AI/ML functionalities will significantly enhance the efficiency and effectiveness of the Hostel Grievance Redressal System. By leveraging advanced technologies and integrating them within a Flask API framework, the system will provide a more responsive, empathetic, and proactive approach to managing resident grievances.
---
## License
This project is licensed under the [MIT License](LICENSE).
## Contact
For any questions or feedback, please contact [[email protected]](mailto:[email protected]).
|