File size: 4,229 Bytes
c3cc0a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import random
import json
from datetime import datetime, timedelta
import logging
import os

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class IntelligentRoutingDataGenerator:
    def __init__(self):
        self.categories = ['electricity', 'internet', 'plumber', 'water_cooler', 'sweeper', 'carpenter']
        self.availability_statuses = ['Available', 'Unavailable']
        self.hostel_names = ['bh1', 'bh2', 'bh3', 'ivh', 'gh']
        self.floor_numbers = [0, 1, 2, 3]
        self.time_slots = [
            "08:00-12:00", "12:00-16:00", "16:00-20:00"
        ]

    def generate_staff_members(self, category):
        """Generate 2 staff members for a specific category"""
        return [
            {
                "staff_id": f"S{random.randint(10000, 99999)}",
                "department": category,  # Ensure staff department matches grievance category
                "current_workload": random.randint(0, 5),
                "availability_status": random.choice(self.availability_statuses),
                "past_resolution_rate": round(random.uniform(0.85, 0.99), 2)
            }
            for _ in range(2)
        ]

    def generate_availability_data(self, staff_id, student_id):
        return {
            "staff_availability": [
                {
                    "staff_id": staff_id,
                    "time_slot": random.choice(self.time_slots),
                    "availability_status": random.choice(self.availability_statuses)
                }
            ],
            "student_availability": [
                {
                    "student_id": student_id,
                    "time_slot": random.choice(self.time_slots),
                    "availability_status": random.choice(self.availability_statuses)
                }
            ]
        }

    def generate_sample(self, index):
        grievance_id = f"G{67890 + index}"
        student_id = f"STU{200 + index}"
        
        # First select category, then generate matching staff
        selected_category = random.choice(self.categories)
        staff_members = self.generate_staff_members(selected_category)
        
        # Generate base timestamp
        base_time = datetime.utcnow()
        submission_time = base_time - timedelta(minutes=random.randint(0, 60))
        
        # Generate sample data
        sample = {
            "grievance_id": grievance_id,
            "category": selected_category,
            "submission_timestamp": submission_time.strftime("%Y-%m-%dT%H:%M:%SZ"),
            "student_room_no": str(random.randint(100, 499)),
            "hostel_name": random.choice(self.hostel_names),
            "floor_number": random.choice(self.floor_numbers),
            "current_staff_status": staff_members,
            "floor_metrics": {
                "number_of_requests": random.randint(0, 30),
                "total_delays": random.randint(0, 5)
            },
            "availability_data": self.generate_availability_data(
                staff_members[0]["staff_id"], 
                student_id
            )
        }
        
        return sample

    def generate_dataset(self, num_samples, output_path):
        dataset = []
        for i in range(num_samples):
            sample = self.generate_sample(i)
            dataset.append(sample)
        
        # Create directory if it doesn't exist
        os.makedirs(os.path.dirname(output_path), exist_ok=True)
        
        # Save to JSON file
        with open(output_path, 'w') as f:
            json.dump(dataset, f, indent=2)
        
        logger.info(f"Generated {len(dataset)} samples and saved to {output_path}")
        return dataset

def main():
    generator = IntelligentRoutingDataGenerator()
    
    # Generate training data
    train_samples = generator.generate_dataset(
        40000, 
        'models/intelligent_routing/train_data/training_data.json'
    )
    
    # Generate test data
    test_samples = generator.generate_dataset(
        8000, 
        'models/intelligent_routing/test_data/test_data.json'
    )
    
    print(f"Generated {len(train_samples)} training samples and {len(test_samples)} test samples")

if __name__ == "__main__":
    main()