File size: 9,376 Bytes
c3cc0a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import json
import logging
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
from model import IntelligentRoutingModel
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
import os

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('testing.log'),
        logging.StreamHandler()
    ]
)

logger = logging.getLogger(__name__)

class IntelligentRoutingTester:
    def __init__(self, model_path, test_data_path):
        self.model = IntelligentRoutingModel()
        self.model.load_model(model_path)
        self.test_data_path = test_data_path
        
        # Create results directory
        self.results_dir = 'models/intelligent_routing/test_results'
        os.makedirs(self.results_dir, exist_ok=True)

    def load_test_data(self):
        """Load test data from JSON file"""
        try:
            logger.info(f"Loading test data from {self.test_data_path}")
            with open(self.test_data_path, 'r') as f:
                data = json.load(f)
            logger.info(f"Successfully loaded {len(data)} test samples")
            return data
        except Exception as e:
            logger.error(f"Error loading test data: {str(e)}")
            raise

    def generate_test_cases(self):
        """Generate specific test cases to evaluate model robustness"""
        test_cases = []
        
        # Test case 1: Ideal scenario
        test_cases.append({
            "grievance_id": "G_TEST_1",
            "category": "electricity",
            "submission_timestamp": datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ"),
            "floor_number": 1,
            "hostel_name": "bh1",
            "student_room_no": "101",
            "current_staff_status": [
                {
                    "staff_id": "S_TEST_1",
                    "department": "electricity",
                    "current_workload": 1,
                    "availability_status": "Available",
                    "past_resolution_rate": 0.95,
                    "current_floor": 1
                }
            ],
            "floor_metrics": {
                "number_of_requests": 5,
                "total_delays": 1
            }
        })
        
        # Test case 2: High workload scenario
        test_cases.append({
            "grievance_id": "G_TEST_2",
            "category": "plumber",
            "submission_timestamp": datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ"),
            "floor_number": 2,
            "hostel_name": "bh2",
            "student_room_no": "201",
            "current_staff_status": [
                {
                    "staff_id": "S_TEST_2",
                    "department": "plumber",
                    "current_workload": 4,
                    "availability_status": "Available",
                    "past_resolution_rate": 0.90,
                    "current_floor": 1
                }
            ],
            "floor_metrics": {
                "number_of_requests": 15,
                "total_delays": 3
            }
        })
        
        # Test case 3: Multiple staff scenario
        test_cases.append({
            "grievance_id": "G_TEST_3",
            "category": "carpenter",
            "submission_timestamp": datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ"),
            "floor_number": 3,
            "hostel_name": "bh3",
            "student_room_no": "301",
            "current_staff_status": [
                {
                    "staff_id": "S_TEST_3A",
                    "department": "carpenter",
                    "current_workload": 2,
                    "availability_status": "Available",
                    "past_resolution_rate": 0.88,
                    "current_floor": 3
                },
                {
                    "staff_id": "S_TEST_3B",
                    "department": "carpenter",
                    "current_workload": 1,
                    "availability_status": "Available",
                    "past_resolution_rate": 0.92,
                    "current_floor": 2
                }
            ],
            "floor_metrics": {
                "number_of_requests": 8,
                "total_delays": 2
            }
        })
        
        return test_cases

    def evaluate_model(self):
        """Evaluate model performance on test data"""
        logger.info("Starting model evaluation")
        
        # Load test data
        test_data = self.load_test_data()
        X_test, y_test = self.model.preprocess_data(test_data)
        
        # Get predictions
        logger.info("Making predictions on test data")
        y_pred = self.model.model.predict(X_test)
        y_pred_binary = (y_pred > 0.5).astype(int)
        
        # Calculate metrics
        metrics = {
            'accuracy': accuracy_score(y_test, y_pred_binary),
            'precision': precision_score(y_test, y_pred_binary),
            'recall': recall_score(y_test, y_pred_binary),
            'f1': f1_score(y_test, y_pred_binary)
        }
        
        # Generate confusion matrix
        cm = confusion_matrix(y_test, y_pred_binary)
        
        # Plot confusion matrix
        self.plot_confusion_matrix(cm)
        
        logger.info(f"Evaluation metrics: {metrics}")
        return metrics, cm, y_test, y_pred

    def plot_confusion_matrix(self, cm):
        """Plot and save confusion matrix"""
        plt.figure(figsize=(8, 6))
        sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
        plt.title('Confusion Matrix')
        plt.ylabel('True Label')
        plt.xlabel('Predicted Label')
        plt.savefig(f'{self.results_dir}/confusion_matrix.png')
        plt.close()

    def test_specific_cases(self):
        """Test model on specific test cases"""
        test_cases = self.generate_test_cases()
        results = []
        
        for case in test_cases:
            prediction = self.model.predict(case)
            results.append({
                'case': case['grievance_id'],
                'prediction': prediction,
                'analysis': self.analyze_prediction(case, prediction)
            })
        
        return results

    def analyze_prediction(self, case, prediction):
        """Analyze the prediction for a specific case"""
        if not prediction:
            return "No suitable staff found"
            
        analysis = {
            'assigned_staff': prediction['assigned_staff_id'],
            'response_time': (
                datetime.strptime(prediction['assignment_timestamp'], "%Y-%m-%dT%H:%M:%SZ") -
                datetime.strptime(case['submission_timestamp'], "%Y-%m-%dT%H:%M:%SZ")
            ).total_seconds(),
            'same_floor_assignment': 
                any(staff['current_floor'] == case['floor_number'] 
                    for staff in case['current_staff_status']
                    if staff['staff_id'] == prediction['assigned_staff_id'])
        }
        
        return analysis

    def run_full_test(self):
        """Run complete test suite and generate report"""
        logger.info("Starting full model testing")
        
        # Evaluate model
        metrics, cm, y_test, y_pred = self.evaluate_model()
        
        # Test specific cases
        specific_case_results = self.test_specific_cases()
        
        # Generate test report
        report = {
            'metrics': metrics,
            'specific_case_results': specific_case_results,
            'test_timestamp': datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ"),
            'detailed_analysis': {
                'false_positives': int(cm[0][1]),
                'false_negatives': int(cm[1][0]),
                'average_prediction_confidence': float(np.mean(y_pred))
            }
        }
        
        # Save report
        with open(f'{self.results_dir}/test_report.json', 'w') as f:
            json.dump(report, f, indent=2)
        
        logger.info("Testing completed. Results saved in test_results directory")
        return report

def main():
    try:
        model_path = 'models/intelligent_routing/saved_model/model.keras'
        test_data_path = 'models/intelligent_routing/test_data/test_data.json'
        
        logger.info("Initializing tester")
        tester = IntelligentRoutingTester(model_path, test_data_path)
        
        logger.info("Running full test suite")
        report = tester.run_full_test()
        
        logger.info("\nTest Results Summary:")
        logger.info(f"Accuracy: {report['metrics']['accuracy']:.4f}")
        logger.info(f"Precision: {report['metrics']['precision']:.4f}")
        logger.info(f"Recall: {report['metrics']['recall']:.4f}")
        logger.info(f"F1 Score: {report['metrics']['f1']:.4f}")
        logger.info("\nDetailed Analysis:")
        logger.info(f"False Positives: {report['detailed_analysis']['false_positives']}")
        logger.info(f"False Negatives: {report['detailed_analysis']['false_negatives']}")
        logger.info(f"Avg Prediction Confidence: {report['detailed_analysis']['average_prediction_confidence']:.4f}")
        
    except Exception as e:
        logger.error(f"Error during testing: {str(e)}", exc_info=True)
        raise

if __name__ == "__main__":
    main()