from model import IntelligentRoutingModel | |
import os | |
import logging | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.FileHandler('training.log'), | |
logging.StreamHandler() | |
] | |
) | |
logger = logging.getLogger(__name__) | |
def main(): | |
try: | |
logger.info("Starting model training process") | |
# Create model instance | |
logger.info("Initializing IntelligentRoutingModel") | |
model = IntelligentRoutingModel() | |
# Train model | |
train_data_path = 'models/intelligent_routing/train_data/training_data.json' | |
logger.info(f"Training model with data from {train_data_path}") | |
history = model.train(train_data_path, epochs=10) | |
# Create directory if it doesn't exist | |
os.makedirs('models/intelligent_routing/saved_model', exist_ok=True) | |
# Save model with correct extension | |
model_path = 'models/intelligent_routing/saved_model/model.keras' | |
logger.info(f"Saving trained model to {model_path}") | |
model.save_model(model_path) | |
logger.info("Model training completed and saved successfully") | |
except Exception as e: | |
logger.error(f"Error during model training: {str(e)}", exc_info=True) | |
raise | |
if __name__ == "__main__": | |
main() | |