Transcendental-Programmer
Refactor core logic: move and modularize all latent space, sampling, and utility code into faceforge_core/
e3af1ef
from diffusers import AutoencoderTiny, StableDiffusionXLPipeline | |
from .hacked_sdxl_pipeline import HackedSDXLPipeline | |
import torch | |
def fast_diffusion_pipeline(model_id = "stabilityai/sdxl-turbo", vae_id = "madebyollin/taesdxl", compile = False): | |
""" | |
:param compile: If true, does a bunch of stuff to make calls fast, but the first call will be very slow as a consequence | |
- If you use this, don't vary the batch size (probably) | |
""" | |
pipe = HackedSDXLPipeline.from_pretrained(model_id, torch_dtype = torch.float16) | |
pipe.set_progress_bar_config(disable=True) | |
pipe.cached_encode = None | |
pipe.vae = AutoencoderTiny.from_pretrained(vae_id, torch_dtype=torch.float16) | |
pipe.to('cuda') | |
if compile: | |
pipe.unet = torch.compile(pipe.unet) | |
pipe.vae.decode = torch.compile(pipe.vae.decode) | |
""" | |
from sfast.compilers.stable_diffusion_pipeline_compiler import (compile, CompilationConfig) | |
config = CompilationConfig() | |
config.enable_jit = True | |
config.enable_jit_freeze = True | |
config.trace_scheduler = True | |
config.enable_cnn_optimization = True | |
config.preserve_parameters = False | |
config.prefer_lowp_gemm = True | |
pipe = compile(pipe, config) | |
""" | |
return pipe | |