“Transcendental-Programmer”
commited on
Commit
·
c70fcb3
1
Parent(s):
9d0294b
feat: inital commit
Browse files
latent_space_explorer/__init__.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from .fast_sd import fast_diffusion_pipeline
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import pygame
|
8 |
+
import numpy as np
|
9 |
+
import time
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
from .game_objects import Point, TextPrompt
|
13 |
+
from .sampling import (
|
14 |
+
DistanceSampling,
|
15 |
+
CircleSampling
|
16 |
+
)
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class GameConfig:
|
20 |
+
point_thickness : float = 10 # Thickness for each point
|
21 |
+
zoom_speed : float = 0.75 # How fast we zoom in or out
|
22 |
+
move_speed : float = 0.75 # How fast we move around canvas
|
23 |
+
point_font_size : int = 25 # Size of fonts for points on screen
|
24 |
+
|
25 |
+
prompt_font_size : int = 30 # Size of font for prompt on screen
|
26 |
+
|
27 |
+
# screen size
|
28 |
+
width : int = 1920
|
29 |
+
height : int = 1080
|
30 |
+
|
31 |
+
# size of sample in top left
|
32 |
+
sample_width : int = 512
|
33 |
+
sample_height : int = 512
|
34 |
+
|
35 |
+
compile : bool = False # compile the sd model with torch.compile?
|
36 |
+
sampler : str = "distance" # "distance" or "circle"
|
37 |
+
seed : int = 0 # Seed for initial latent noise
|
38 |
+
call_every : int = 90 # Only calls draw function every *this many* ms. This is to prevent lag. Set this to be around the latency of the model
|
39 |
+
|
40 |
+
class LatentSpaceExplorer:
|
41 |
+
def __init__(self, config : GameConfig = GameConfig()):
|
42 |
+
self.config = config
|
43 |
+
|
44 |
+
self.pipe = fast_diffusion_pipeline(compile = self.config.compile)
|
45 |
+
self.points : List[Point] = []
|
46 |
+
self.player_pos = None # [2,] np array in R2 space
|
47 |
+
|
48 |
+
self.dragging_point_idx = None
|
49 |
+
self.selected_point_idx = None
|
50 |
+
|
51 |
+
self.zoom_level = 300.0
|
52 |
+
self.translation = np.array([-self.config.width/2, -self.config.height/2])
|
53 |
+
|
54 |
+
self.point_kwargs = {}
|
55 |
+
if self.config.sampler == "distance":
|
56 |
+
self.sampler = DistanceSampling
|
57 |
+
elif self.config.sampler == "circle":
|
58 |
+
self.sampler = CircleSampling
|
59 |
+
self.point_kwargs['on_edge'] = True
|
60 |
+
else:
|
61 |
+
raise ValueError(f"Invalid sampler choice: {self.config.sampler}")
|
62 |
+
|
63 |
+
pygame.init()
|
64 |
+
self.screen = pygame.display.set_mode((self.config.width, self.config.height))
|
65 |
+
self.clock = pygame.time.Clock()
|
66 |
+
self.ms_elapsed = 0
|
67 |
+
|
68 |
+
# (n_samples, running average)
|
69 |
+
self.avg_latency = (0, 0) # Track average latency of generation for debug
|
70 |
+
|
71 |
+
self.sample_image = None
|
72 |
+
self.sample_font = pygame.font.Font(None, self.config.point_font_size)
|
73 |
+
|
74 |
+
# User input
|
75 |
+
self.input_font = pygame.font.Font(None, self.config.prompt_font_size)
|
76 |
+
self.inputting_text = False
|
77 |
+
self.inputting_text_for = None # oneof ["modify", "add"]
|
78 |
+
self.text_prompt : TextPrompt = None
|
79 |
+
|
80 |
+
def tick(self):
|
81 |
+
self.clock.tick()
|
82 |
+
self.ms_elapsed += self.clock.get_time()
|
83 |
+
|
84 |
+
def update_latency(self, new_observation):
|
85 |
+
n = self.avg_latency[0]
|
86 |
+
old_avg = self.avg_latency[1]
|
87 |
+
self.avg_latency = (n + 1, (old_avg * n + new_observation) / (n + 1))
|
88 |
+
|
89 |
+
def create_text_prompt(self, prompt_text):
|
90 |
+
self.text_prompt = TextPrompt(prompt_text, self.input_font, self.screen)
|
91 |
+
|
92 |
+
def switch_sampler(self):
|
93 |
+
if self.config.sampler == "distance":
|
94 |
+
self.config.sampler = "circle"
|
95 |
+
self.sampler = CircleSampling
|
96 |
+
self.point_kwargs = {'on_edge' : True}
|
97 |
+
elif self.config.sampler == "circle":
|
98 |
+
self.config.sampler = "distance"
|
99 |
+
self.sampler = DistanceSampling
|
100 |
+
self.point_kwargs = {}
|
101 |
+
self.set_prompts(self.prompts, reset = True)
|
102 |
+
|
103 |
+
@property
|
104 |
+
def encodes(self):
|
105 |
+
"""
|
106 |
+
Get encodings directly from points as a tuple with batched encodings
|
107 |
+
"""
|
108 |
+
if not self.points:
|
109 |
+
return None
|
110 |
+
encode_list = [p.encoding for p in self.points] # list of N-tuples
|
111 |
+
n = len(encode_list[0])
|
112 |
+
res = []
|
113 |
+
for i in range(n):
|
114 |
+
res.append(torch.cat([e[i] for e in encode_list], dim = 0) if encode_list[0][i] is not None else None)
|
115 |
+
|
116 |
+
return tuple(res)
|
117 |
+
|
118 |
+
@property
|
119 |
+
def prompts(self):
|
120 |
+
"""
|
121 |
+
Get a list of current prompts
|
122 |
+
"""
|
123 |
+
return [p.text for p in self.points]
|
124 |
+
|
125 |
+
@property
|
126 |
+
def r2_points(self):
|
127 |
+
"""
|
128 |
+
Get all points in terms of R2 space
|
129 |
+
"""
|
130 |
+
points = [np.array(p.xy_pos) for p in self.points]
|
131 |
+
points = np.stack(points, axis = 0) # [n, 2]
|
132 |
+
return points
|
133 |
+
|
134 |
+
@property
|
135 |
+
def screen_space_points(self):
|
136 |
+
"""
|
137 |
+
Get all points in terms of screen space
|
138 |
+
"""
|
139 |
+
screen_space = (self.r2_points * self.zoom_level) - self.translation[None,:]
|
140 |
+
return screen_space # list of points in scren space
|
141 |
+
|
142 |
+
@property
|
143 |
+
def mouse_pos(self):
|
144 |
+
return np.array(pygame.mouse.get_pos())
|
145 |
+
|
146 |
+
def invert_screen_space(self, point):
|
147 |
+
"""
|
148 |
+
taking position as [2,] np array in screen space, return R2 pos
|
149 |
+
"""
|
150 |
+
return (point + self.translation) / self.zoom_level
|
151 |
+
|
152 |
+
def screen_space(self, point):
|
153 |
+
"""
|
154 |
+
R2 -> screenspace as [2,] array
|
155 |
+
"""
|
156 |
+
return (point * self.zoom_level) - self.translation
|
157 |
+
|
158 |
+
def fixed_seed(self):
|
159 |
+
"""
|
160 |
+
Controls random number generator for initial latent noise
|
161 |
+
"""
|
162 |
+
return torch.Generator('cuda').manual_seed(self.config.seed)
|
163 |
+
|
164 |
+
def get_encodes(self, text):
|
165 |
+
"""
|
166 |
+
Get text encodings for some prompt then split them so we can associate points with thier encodings
|
167 |
+
"""
|
168 |
+
encodes = self.pipe.get_encodes(text, generator = self.fixed_seed())
|
169 |
+
# (n-tuple of lists) into (list of n-tuples)
|
170 |
+
if not isinstance(encodes, tuple) and not isinstance(encodes, list):
|
171 |
+
return encodes # Already a tensor, no problem
|
172 |
+
|
173 |
+
res_list = []
|
174 |
+
for i in range(len(encodes[0])):
|
175 |
+
res_list_i = [encodes_j[i].unsqueeze(0) if encodes_j is not None else None for encodes_j in encodes]
|
176 |
+
res_list.append(tuple(res_list_i))
|
177 |
+
|
178 |
+
return res_list
|
179 |
+
|
180 |
+
def draw_sample(self):
|
181 |
+
"""
|
182 |
+
Draw sample with current points and player position
|
183 |
+
"""
|
184 |
+
if self.player_pos is not None and self.encodes is not None:
|
185 |
+
if self.ms_elapsed >= self.config.call_every:
|
186 |
+
time_start = time.time()
|
187 |
+
encoding = self.sampler(self.encodes)(self.player_pos, self.r2_points)
|
188 |
+
self.sample_image = self.pipe.generate_from_encodes(encoding, generator = self.fixed_seed()).images[0]
|
189 |
+
time_total = float(time.time() - time_start) * 1000 # s -> ms
|
190 |
+
|
191 |
+
self.update_latency(time_total)
|
192 |
+
|
193 |
+
self.ms_elapsed = 0
|
194 |
+
|
195 |
+
def get_player_pos_r2(self):
|
196 |
+
"""
|
197 |
+
Get player position in R2 from the
|
198 |
+
"""
|
199 |
+
self.player_pos = self.invert_screen_space(self.mouse_pos)
|
200 |
+
|
201 |
+
def get_player_pos_screenspace(self):
|
202 |
+
"""
|
203 |
+
Get player pos in screen space
|
204 |
+
"""
|
205 |
+
if self.player_pos is not None: return self.screen_space(self.player_pos)
|
206 |
+
|
207 |
+
def detect_mouse_on_point(self):
|
208 |
+
"""
|
209 |
+
Detect if mouse is currently in a point. If so, returns index of point, otherwise returns none.
|
210 |
+
"""
|
211 |
+
if not self.points:
|
212 |
+
return None
|
213 |
+
|
214 |
+
mouse_pos = self.mouse_pos
|
215 |
+
points = self.screen_space_points
|
216 |
+
|
217 |
+
distances = np.linalg.norm(points - mouse_pos[None,:], axis = 1)
|
218 |
+
close_idx = np.argmin(distances)
|
219 |
+
|
220 |
+
if distances[close_idx] <= self.config.point_thickness:
|
221 |
+
return close_idx
|
222 |
+
return None
|
223 |
+
|
224 |
+
# === POINT/NODE CONTROL ===
|
225 |
+
|
226 |
+
def modify_node(self, new_prompt):
|
227 |
+
idx = self.selected_point_idx
|
228 |
+
new_prompts = self.prompts
|
229 |
+
new_prompts[idx] = new_prompt
|
230 |
+
self.set_prompts(new_prompts, reset = False)
|
231 |
+
|
232 |
+
def add_node(self, new_prompt):
|
233 |
+
self.set_prompts(self.prompts + [new_prompt], reset = False)
|
234 |
+
|
235 |
+
def del_node(self):
|
236 |
+
idx = self.selected_point_idx
|
237 |
+
new_prompts = list(self.prompts)
|
238 |
+
del new_prompts[idx]
|
239 |
+
self.set_prompts(new_prompts, reset = False)
|
240 |
+
self.selected_point_idx = None
|
241 |
+
|
242 |
+
def prepare_to_prompt(self, mode):
|
243 |
+
"""
|
244 |
+
Get ready to show the textbox. Call when we want the text prompt to come
|
245 |
+
"""
|
246 |
+
self.inputting_text = True
|
247 |
+
self.inputting_text_for = mode
|
248 |
+
|
249 |
+
if mode == "modify":
|
250 |
+
self.create_text_prompt("Enter New Prompt To Replace Node:")
|
251 |
+
elif mode == "add":
|
252 |
+
self.create_text_prompt("Enter New Prompt To Create Node:")
|
253 |
+
|
254 |
+
def handle_prompt(self):
|
255 |
+
"""
|
256 |
+
After enter pressed with textbox, this is called to go back to normal game
|
257 |
+
"""
|
258 |
+
done_prompting = self.text_prompt.update()
|
259 |
+
|
260 |
+
if done_prompting:
|
261 |
+
new_prompt = self.text_prompt.user_input.strip()
|
262 |
+
if self.inputting_text_for == "modify":
|
263 |
+
self.modify_node(new_prompt)
|
264 |
+
elif self.inputting_text_for == "add":
|
265 |
+
self.add_node(new_prompt)
|
266 |
+
self.text_prompt = None
|
267 |
+
self.inputting_text = False
|
268 |
+
|
269 |
+
def set_prompts(self, prompts : List[str], reset : bool = False):
|
270 |
+
"""
|
271 |
+
:param prompts: New prompts to update to
|
272 |
+
:param reset: Reset xy positions of points?
|
273 |
+
"""
|
274 |
+
|
275 |
+
if len(prompts) > 0:
|
276 |
+
encodes = self.get_encodes(prompts)
|
277 |
+
|
278 |
+
# First call
|
279 |
+
if not self.points or reset:
|
280 |
+
self.points = [Point(prompt, encoding, xy_init_kwargs = self.point_kwargs) for (prompt, encoding) in zip(prompts, encodes)]
|
281 |
+
return
|
282 |
+
|
283 |
+
# Modifications
|
284 |
+
old_len = len(self.points)
|
285 |
+
new_len = len(prompts)
|
286 |
+
|
287 |
+
pos = [tuple(pos_i) for pos_i in self.r2_points] # positions for each point
|
288 |
+
|
289 |
+
if old_len <= new_len: # Additions or modification
|
290 |
+
pos += [None] * (new_len - old_len) # randomly init this many new positions
|
291 |
+
self.points = [Point(prompt, encoding, pos_i, xy_init_kwargs = self.point_kwargs) for (prompt, encoding, pos_i) in zip(prompts, encodes, pos)]
|
292 |
+
return
|
293 |
+
elif old_len > new_len: # Deletions
|
294 |
+
idx_to_keep = []
|
295 |
+
for idx, prompt in enumerate(self.prompts):
|
296 |
+
if prompt in prompts:
|
297 |
+
idx_to_keep.append(idx)
|
298 |
+
self.points = [self.points[idx] for idx in idx_to_keep]
|
299 |
+
return
|
300 |
+
|
301 |
+
# === CONTROLS ===
|
302 |
+
|
303 |
+
def handle_event_controls(self):
|
304 |
+
"""
|
305 |
+
Handles discrete (i.e. keydown, mousedown) controls through events
|
306 |
+
"""
|
307 |
+
for event in pygame.event.get():
|
308 |
+
if event.type == pygame.QUIT:
|
309 |
+
pygame.quit()
|
310 |
+
quit()
|
311 |
+
elif event.type == pygame.MOUSEBUTTONDOWN:
|
312 |
+
# Click
|
313 |
+
if event.button == 1: # Left click
|
314 |
+
self.selected_point_idx = self.detect_mouse_on_point()
|
315 |
+
if self.selected_point_idx is not None: self.dragging_point_idx = None
|
316 |
+
else: # If no point was selected, we move player cursor
|
317 |
+
self.get_player_pos_r2()
|
318 |
+
self.draw_sample()
|
319 |
+
elif event.button == 3: # Right click
|
320 |
+
self.dragging_point_idx = self.detect_mouse_on_point()
|
321 |
+
if self.dragging_point_idx is not None: self.selected_point_idx = None
|
322 |
+
elif event.type == pygame.MOUSEBUTTONUP:
|
323 |
+
if event.button == 3: # Right Up
|
324 |
+
self.dragging_point_idx = None # Disable drag
|
325 |
+
elif event.type == pygame.MOUSEMOTION:
|
326 |
+
if self.dragging_point_idx is not None:
|
327 |
+
# Drag point
|
328 |
+
self.points[self.dragging_point_idx].move(self.invert_screen_space(self.mouse_pos))
|
329 |
+
elif pygame.mouse.get_pressed()[0]:
|
330 |
+
self.get_player_pos_r2()
|
331 |
+
self.draw_sample()
|
332 |
+
elif event.type == pygame.KEYDOWN:
|
333 |
+
keys = pygame.key.get_pressed()
|
334 |
+
if keys[pygame.K_r]:
|
335 |
+
self.set_prompts(self.prompts, reset = True)
|
336 |
+
elif keys[pygame.K_t] and self.selected_point_idx is not None: # Modify existing node
|
337 |
+
self.prepare_to_prompt("modify")
|
338 |
+
return
|
339 |
+
elif keys[pygame.K_p]: # Adding a node
|
340 |
+
self.prepare_to_prompt("add")
|
341 |
+
return
|
342 |
+
elif keys[pygame.K_o] and self.selected_point_idx is not None:
|
343 |
+
# Remove node
|
344 |
+
self.del_node()
|
345 |
+
elif keys[pygame.K_g]:
|
346 |
+
if self.sample_image is not None:
|
347 |
+
self.sample_image.save("sample.png")
|
348 |
+
elif keys[pygame.K_m]:
|
349 |
+
# Change sampler mode
|
350 |
+
self.switch_sampler()
|
351 |
+
|
352 |
+
|
353 |
+
def handle_continuous_controls(self):
|
354 |
+
"""
|
355 |
+
Continuous controls for movement (i.e. zoom, movement)
|
356 |
+
"""
|
357 |
+
keys = pygame.key.get_pressed()
|
358 |
+
if keys[pygame.K_q]:
|
359 |
+
self.zoom_level = max(0.01, self.zoom_level - self.config.zoom_speed)
|
360 |
+
elif keys[pygame.K_e]:
|
361 |
+
self.zoom_level = self.zoom_level + self.config.zoom_speed
|
362 |
+
|
363 |
+
idx, sign = None, None
|
364 |
+
|
365 |
+
# up, down, left, right
|
366 |
+
if keys[pygame.K_w]:
|
367 |
+
idx, sign = 1, -1
|
368 |
+
elif keys[pygame.K_s]:
|
369 |
+
idx, sign = 1, 1
|
370 |
+
elif keys[pygame.K_a]:
|
371 |
+
idx, sign = 0, -1
|
372 |
+
elif keys[pygame.K_d]:
|
373 |
+
idx, sign = 0, 1
|
374 |
+
|
375 |
+
if idx is not None and sign is not None:
|
376 |
+
self.translation[idx] += sign * self.config.move_speed
|
377 |
+
|
378 |
+
# === DRAWING THINGS ===
|
379 |
+
|
380 |
+
def draw_main_screen(self):
|
381 |
+
"""
|
382 |
+
Draw main screen. Sample image, points, etc.
|
383 |
+
"""
|
384 |
+
def get_point_color(idx):
|
385 |
+
color = (255, 255, 255) # default to white
|
386 |
+
if idx == self.selected_point_idx:
|
387 |
+
color = (0, 127.5, 0)
|
388 |
+
if idx == self.dragging_point_idx:
|
389 |
+
color = (255, 0, 0)
|
390 |
+
return color
|
391 |
+
|
392 |
+
if self.config.sampler == "circle":
|
393 |
+
# Draw unit circle on screen
|
394 |
+
center = np.array([0,0])
|
395 |
+
border = np.array([1,0])
|
396 |
+
|
397 |
+
center = self.screen_space(center)
|
398 |
+
border = self.screen_space(border)
|
399 |
+
radius = abs(border[0] - center[0])
|
400 |
+
|
401 |
+
pygame.draw.circle(self.screen, (255, 255, 255), center, int(radius), 1)
|
402 |
+
|
403 |
+
if len(self.points) > 0:
|
404 |
+
for idx, point in enumerate(self.screen_space_points):
|
405 |
+
pygame.draw.circle(self.screen, get_point_color(idx), point, self.config.point_thickness)
|
406 |
+
text = self.sample_font.render(self.points[idx].text, True, get_point_color(idx))
|
407 |
+
self.screen.blit(text, point)
|
408 |
+
|
409 |
+
player_pos = self.get_player_pos_screenspace()
|
410 |
+
if player_pos is not None:
|
411 |
+
pygame.draw.circle(self.screen, (0, 255, 0), player_pos, self.config.point_thickness/2)
|
412 |
+
|
413 |
+
if self.sample_image is not None:
|
414 |
+
pygame_image = pygame.image.fromstring(self.sample_image.tobytes(), self.sample_image.size, self.sample_image.mode)
|
415 |
+
pygame_image = pygame.transform.scale(pygame_image, (self.config.sample_width, self.config.sample_height))
|
416 |
+
self.screen.blit(pygame_image, (0, 0))
|
417 |
+
|
418 |
+
def update(self):
|
419 |
+
"""
|
420 |
+
Main pygame loop
|
421 |
+
"""
|
422 |
+
|
423 |
+
if not self.inputting_text:
|
424 |
+
self.handle_event_controls()
|
425 |
+
self.handle_continuous_controls()
|
426 |
+
self.tick()
|
427 |
+
|
428 |
+
self.screen.fill((0,0,0))
|
429 |
+
self.draw_main_screen()
|
430 |
+
|
431 |
+
# Handle prompt after so it can be drawn over the main screen
|
432 |
+
if self.inputting_text:
|
433 |
+
self.handle_prompt()
|
434 |
+
pygame.display.flip()
|
latent_space_explorer/fast_sd.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import AutoencoderTiny, StableDiffusionXLPipeline
|
2 |
+
from .hacked_sdxl_pipeline import HackedSDXLPipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
def fast_diffusion_pipeline(model_id = "stabilityai/sdxl-turbo", vae_id = "madebyollin/taesdxl", compile = False):
|
6 |
+
"""
|
7 |
+
:param compile: If true, does a bunch of stuff to make calls fast, but the first call will be very slow as a consequence
|
8 |
+
- If you use this, don't vary the batch size (probably)
|
9 |
+
"""
|
10 |
+
|
11 |
+
pipe = HackedSDXLPipeline.from_pretrained(model_id, torch_dtype = torch.float16)
|
12 |
+
pipe.set_progress_bar_config(disable=True)
|
13 |
+
pipe.cached_encode = None
|
14 |
+
pipe.vae = AutoencoderTiny.from_pretrained(vae_id, torch_dtype=torch.float16)
|
15 |
+
|
16 |
+
pipe.to('cuda')
|
17 |
+
|
18 |
+
if compile:
|
19 |
+
pipe.unet = torch.compile(pipe.unet)
|
20 |
+
pipe.vae.decode = torch.compile(pipe.vae.decode)
|
21 |
+
"""
|
22 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (compile, CompilationConfig)
|
23 |
+
|
24 |
+
config = CompilationConfig()
|
25 |
+
config.enable_jit = True
|
26 |
+
config.enable_jit_freeze = True
|
27 |
+
config.trace_scheduler = True
|
28 |
+
config.enable_cnn_optimization = True
|
29 |
+
config.preserve_parameters = False
|
30 |
+
config.prefer_lowp_gemm = True
|
31 |
+
|
32 |
+
pipe = compile(pipe, config)
|
33 |
+
"""
|
34 |
+
return pipe
|
latent_space_explorer/game_objects.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .utils import random_circle_init
|
2 |
+
|
3 |
+
import math
|
4 |
+
import pygame
|
5 |
+
|
6 |
+
class Point:
|
7 |
+
# Point representing a prompt/generation
|
8 |
+
"""
|
9 |
+
:param text: Text associated with the point
|
10 |
+
:param encoding: Encoding associated with the point
|
11 |
+
:param xy_pos: Tuple (x, y) for the position of point in R2. If not given, will initialize randomly
|
12 |
+
:param xy_init_kwargs: kwargs to random_circle_init for randomly init'ing xy_pos
|
13 |
+
"""
|
14 |
+
def __init__(self, text, encoding, xy_pos = None, xy_init_kwargs = {}):
|
15 |
+
self.text = text
|
16 |
+
|
17 |
+
if xy_pos is not None:
|
18 |
+
self.xy_pos = xy_pos # Tuple of x and y in R2 space (not screen space)
|
19 |
+
else:
|
20 |
+
self.xy_pos = random_circle_init(**xy_init_kwargs)
|
21 |
+
self.encoding = encoding
|
22 |
+
|
23 |
+
if "on_edge" in xy_init_kwargs:
|
24 |
+
self.on_edge = xy_init_kwargs['on_edge']
|
25 |
+
else:
|
26 |
+
self.on_edge = False
|
27 |
+
|
28 |
+
def move(self, new_xy_pos):
|
29 |
+
if self.on_edge:
|
30 |
+
x, y = new_xy_pos
|
31 |
+
length = math.sqrt(x**2 + y**2)
|
32 |
+
self.xy_pos = (x/length, y/length)
|
33 |
+
else:
|
34 |
+
self.xy_pos = new_xy_pos
|
35 |
+
|
36 |
+
class TextPrompt:
|
37 |
+
def __init__(self, prompt_text, font, screen):
|
38 |
+
self.prompt_text = prompt_text
|
39 |
+
self.font = font
|
40 |
+
self.screen = screen
|
41 |
+
|
42 |
+
self.user_input = ""
|
43 |
+
|
44 |
+
def draw_main_blocks(self):
|
45 |
+
"""
|
46 |
+
Draw main text block and text inside it
|
47 |
+
"""
|
48 |
+
screen_width, screen_height = pygame.display.get_surface().get_size()
|
49 |
+
|
50 |
+
# Margins
|
51 |
+
rect_height_fraction = 0.3
|
52 |
+
rect_width_fraction = 0.7
|
53 |
+
text_prompt_fraction = 0.3
|
54 |
+
border_thickness = 10
|
55 |
+
|
56 |
+
rect_height = int(screen_height * rect_height_fraction)
|
57 |
+
rect_width = int(screen_width * rect_width_fraction)
|
58 |
+
|
59 |
+
rect_x = (screen_width - rect_width) // 2
|
60 |
+
rect_y = (screen_height - rect_height) // 2
|
61 |
+
|
62 |
+
rect = pygame.Rect(rect_x, rect_y, rect_width, rect_height)
|
63 |
+
|
64 |
+
pygame.draw.rect(self.screen, (0, 0, 0), rect) # Fill rectangle with black
|
65 |
+
pygame.draw.rect(self.screen, (255, 255, 255), rect, border_thickness) # Draw white border
|
66 |
+
|
67 |
+
text_surface = self.font.render(self.prompt_text, True, (255, 255, 255)) # Render text
|
68 |
+
text_rect = text_surface.get_rect() # Get text rectangle
|
69 |
+
text_rect.centerx = rect.centerx # Center text horizontally
|
70 |
+
text_rect.y = rect.y + int(rect.height * text_prompt_fraction) # Position text vertically based on fraction
|
71 |
+
self.screen.blit(text_surface, text_rect) # Draw text
|
72 |
+
|
73 |
+
user_text_surface = self.font.render(self.user_input, True, (255, 255,255))
|
74 |
+
user_text_rect = user_text_surface.get_rect()
|
75 |
+
user_text_rect.centerx = rect.centerx
|
76 |
+
user_text_rect.y = rect.y + int(rect.height * (1 - text_prompt_fraction))
|
77 |
+
self.screen.blit(user_text_surface, user_text_rect)
|
78 |
+
|
79 |
+
def get_user_input(self) -> bool:
|
80 |
+
"""
|
81 |
+
Get user input, update self.user_input, and return True if user pressed enter
|
82 |
+
"""
|
83 |
+
for event in pygame.event.get():
|
84 |
+
if event.type == pygame.KEYDOWN:
|
85 |
+
if event.key == pygame.K_BACKSPACE:
|
86 |
+
self.user_input = self.user_input[:-1]
|
87 |
+
elif event.key == pygame.K_RETURN:
|
88 |
+
return True
|
89 |
+
else:
|
90 |
+
self.user_input += event.unicode
|
91 |
+
return False
|
92 |
+
|
93 |
+
def update(self):
|
94 |
+
is_done = self.get_user_input()
|
95 |
+
self.draw_main_blocks()
|
96 |
+
|
97 |
+
return is_done
|
latent_space_explorer/hacked_sdxl_pipeline.py
ADDED
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
SDXL pipeline hacked to cache embeddings for later use
|
3 |
+
|
4 |
+
Summary of changes:
|
5 |
+
- __call__ takes "mode" that can be "cache" or "call"
|
6 |
+
- If "cache", just computes embeddings and returns nothing
|
7 |
+
- If "call", uses pre-computed embeddings ()
|
8 |
+
- Otherwise just has normal behaviour
|
9 |
+
|
10 |
+
- There's a few custom methods after the init that you should look at if using
|
11 |
+
"""
|
12 |
+
|
13 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import *
|
14 |
+
|
15 |
+
class HackedSDXLPipeline(StableDiffusionXLPipeline):
|
16 |
+
def get_encodes(self, *args, **kwargs):
|
17 |
+
"""
|
18 |
+
Get encodings/latents for given prompt. Inputs are identical to if you were calling the pipeline.
|
19 |
+
"""
|
20 |
+
|
21 |
+
self.__call__(*args, mode="cache", guidance_scale = 0.0, num_inference_steps = 1, **kwargs)
|
22 |
+
return self.cached_encodes
|
23 |
+
|
24 |
+
def generate_from_encodes(self, encodes, *args, **kwargs):
|
25 |
+
"""
|
26 |
+
Assuming you have some encodings/latents, pass here to generate from them.
|
27 |
+
"""
|
28 |
+
|
29 |
+
if len(encodes[0].shape) == 2:
|
30 |
+
encodes[0] = encodes[0].unsqueeze(0)
|
31 |
+
if len(encodes[2].shape) == 1:
|
32 |
+
encodes[2] = encodes[2].unsqueeze(0)
|
33 |
+
|
34 |
+
self.cached_encodes = encodes
|
35 |
+
if 'prompt' in kwargs:
|
36 |
+
del kwargs['prompt']
|
37 |
+
|
38 |
+
return self.__call__(*args, prompt = [""] * len(self.cached_encodes[0]), guidance_scale = 0.0, num_inference_steps = 1, mode = "call", **kwargs)
|
39 |
+
|
40 |
+
@torch.no_grad()
|
41 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
42 |
+
def __call__(
|
43 |
+
self,
|
44 |
+
prompt: Union[str, List[str]] = None,
|
45 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
46 |
+
height: Optional[int] = None,
|
47 |
+
width: Optional[int] = None,
|
48 |
+
num_inference_steps: int = 50,
|
49 |
+
timesteps: List[int] = None,
|
50 |
+
denoising_end: Optional[float] = None,
|
51 |
+
guidance_scale: float = 0.0,
|
52 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
53 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
54 |
+
num_images_per_prompt: Optional[int] = 1,
|
55 |
+
eta: float = 0.0,
|
56 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
57 |
+
latents: Optional[torch.FloatTensor] = None,
|
58 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
59 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
60 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
61 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
62 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
63 |
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
64 |
+
output_type: Optional[str] = "pil",
|
65 |
+
return_dict: bool = True,
|
66 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
67 |
+
guidance_rescale: float = 0.0,
|
68 |
+
original_size: Optional[Tuple[int, int]] = None,
|
69 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
70 |
+
target_size: Optional[Tuple[int, int]] = None,
|
71 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
72 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
73 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
74 |
+
clip_skip: Optional[int] = None,
|
75 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
76 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
77 |
+
mode = "call", # cache or call
|
78 |
+
**kwargs,
|
79 |
+
):
|
80 |
+
r"""
|
81 |
+
Function invoked when calling the pipeline for generation.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
prompt (`str` or `List[str]`, *optional*):
|
85 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
86 |
+
instead.
|
87 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
88 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
89 |
+
used in both text-encoders
|
90 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
91 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
92 |
+
Anything below 512 pixels won't work well for
|
93 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
94 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
95 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
96 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
97 |
+
Anything below 512 pixels won't work well for
|
98 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
99 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
100 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
101 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
102 |
+
expense of slower inference.
|
103 |
+
timesteps (`List[int]`, *optional*):
|
104 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
105 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
106 |
+
passed will be used. Must be in descending order.
|
107 |
+
denoising_end (`float`, *optional*):
|
108 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
109 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
110 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
111 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
112 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
113 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
114 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
115 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
116 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
117 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
118 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
119 |
+
usually at the expense of lower image quality.
|
120 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
121 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
122 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
123 |
+
less than `1`).
|
124 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
125 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
126 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
127 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
128 |
+
The number of images to generate per prompt.
|
129 |
+
eta (`float`, *optional*, defaults to 0.0):
|
130 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
131 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
132 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
133 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
134 |
+
to make generation deterministic.
|
135 |
+
latents (`torch.FloatTensor`, *optional*):
|
136 |
+
Pre-generated noireturn Nonesy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
137 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
138 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
139 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
140 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
141 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
142 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
143 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
144 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
145 |
+
argument.
|
146 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
147 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
148 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
149 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
150 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
151 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
152 |
+
input argument.
|
153 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
154 |
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
155 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
|
156 |
+
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
|
157 |
+
if `do_classifier_free_guidance` is set to `True`.
|
158 |
+
If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
159 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
160 |
+
The output format of the generate image. Choose between
|
161 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
162 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
163 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
164 |
+
of a plain tuple.
|
165 |
+
cross_attention_kwargs (`dict`, *optional*):
|
166 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
167 |
+
`self.processor` in
|
168 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
169 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
170 |
+
Guidancettioning return Noneas explained in section 2.2 of
|
171 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
172 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
173 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
174 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
175 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
176 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
177 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
178 |
+
callback_on_step_end (`Callable`, *optional*):
|
179 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
180 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
181 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
182 |
+
`callback_on_step_end_tensor_inputs`.
|
183 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
184 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
185 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
186 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
187 |
+
|
188 |
+
Examples:
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
192 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
193 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
194 |
+
"""
|
195 |
+
|
196 |
+
callback = kwargs.pop("callback", None)
|
197 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
198 |
+
|
199 |
+
if callback is not None:
|
200 |
+
deprecate(
|
201 |
+
"callback",
|
202 |
+
"1.0.0",
|
203 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
204 |
+
)
|
205 |
+
if callback_steps is not None:
|
206 |
+
deprecate(
|
207 |
+
"callback_steps",
|
208 |
+
"1.0.0",
|
209 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
210 |
+
)
|
211 |
+
|
212 |
+
# 0. Default height and width to unet
|
213 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
214 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
215 |
+
|
216 |
+
original_size = original_size or (height, width)
|
217 |
+
target_size = target_size or (height, width)
|
218 |
+
|
219 |
+
# 1. Check inputs. Raise error if not correct
|
220 |
+
self.check_inputs(
|
221 |
+
prompt,
|
222 |
+
prompt_2,
|
223 |
+
height,
|
224 |
+
width,
|
225 |
+
callback_steps,
|
226 |
+
negative_prompt,
|
227 |
+
negative_prompt_2,
|
228 |
+
prompt_embeds,
|
229 |
+
negative_prompt_embeds,
|
230 |
+
pooled_prompt_embeds,
|
231 |
+
negative_pooled_prompt_embeds,
|
232 |
+
ip_adapter_image,
|
233 |
+
ip_adapter_image_embeds,
|
234 |
+
callback_on_step_end_tensor_inputs,
|
235 |
+
)
|
236 |
+
|
237 |
+
self._guidance_scale = guidance_scale
|
238 |
+
self._guidance_rescale = guidance_rescale
|
239 |
+
self._clip_skip = clip_skip
|
240 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
241 |
+
self._denoising_end = denoising_end
|
242 |
+
self._interrupt = False
|
243 |
+
|
244 |
+
# 2. Define call parameters
|
245 |
+
if prompt is not None and isinstance(prompt, str):
|
246 |
+
batch_size = 1
|
247 |
+
elif prompt is not None and isinstance(prompt, list):
|
248 |
+
batch_size = len(prompt)
|
249 |
+
else:
|
250 |
+
batch_size = prompt_embeds.shape[0]
|
251 |
+
|
252 |
+
device = self._execution_device
|
253 |
+
|
254 |
+
# 3. Encode input prompt
|
255 |
+
lora_scale = (
|
256 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
257 |
+
)
|
258 |
+
|
259 |
+
|
260 |
+
if mode == "cache":
|
261 |
+
self.cached_encodes = self.encode_prompt(
|
262 |
+
prompt=prompt,
|
263 |
+
prompt_2=prompt_2,
|
264 |
+
device=device,
|
265 |
+
num_images_per_prompt=num_images_per_prompt,
|
266 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
267 |
+
negative_prompt=negative_prompt,
|
268 |
+
negative_prompt_2=negative_prompt_2,
|
269 |
+
prompt_embeds=prompt_embeds,
|
270 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
271 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
272 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
273 |
+
lora_scale=lora_scale,
|
274 |
+
clip_skip=self.clip_skip,
|
275 |
+
)
|
276 |
+
return None
|
277 |
+
elif mode == "call":
|
278 |
+
(
|
279 |
+
prompt_embeds,
|
280 |
+
negative_prompt_embeds,
|
281 |
+
pooled_prompt_embeds,
|
282 |
+
negative_pooled_prompt_embeds,
|
283 |
+
) = self.cached_encodes
|
284 |
+
else: # Normal behaviour
|
285 |
+
(
|
286 |
+
prompt_embeds,
|
287 |
+
negative_prompt_embeds,
|
288 |
+
pooled_prompt_embeds,
|
289 |
+
negative_pooled_prompt_embeds,
|
290 |
+
) = self.encode_prompt(
|
291 |
+
prompt=prompt,
|
292 |
+
prompt_2=prompt_2,
|
293 |
+
device=device,
|
294 |
+
num_images_per_prompt=num_images_per_prompt,
|
295 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
296 |
+
negative_prompt=negative_prompt,
|
297 |
+
negative_prompt_2=negative_prompt_2,
|
298 |
+
prompt_embeds=prompt_embeds,
|
299 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
300 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
301 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
302 |
+
lora_scale=lora_scale,
|
303 |
+
clip_skip=self.clip_skip,
|
304 |
+
)
|
305 |
+
|
306 |
+
# 4. Prepare timesteps
|
307 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
308 |
+
|
309 |
+
# 5. Prepare latent variables
|
310 |
+
num_channels_latents = self.unet.config.in_channels
|
311 |
+
latents = self.prepare_latents(
|
312 |
+
batch_size * num_images_per_prompt,
|
313 |
+
num_channels_latents,
|
314 |
+
height,
|
315 |
+
width,
|
316 |
+
prompt_embeds.dtype,
|
317 |
+
device,
|
318 |
+
generator,
|
319 |
+
latents,
|
320 |
+
)
|
321 |
+
|
322 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
323 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
324 |
+
|
325 |
+
# 7. Prepare added time ids & embeddings
|
326 |
+
add_text_embeds = pooled_prompt_embeds
|
327 |
+
if self.text_encoder_2 is None:
|
328 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
329 |
+
else:
|
330 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
331 |
+
|
332 |
+
add_time_ids = self._get_add_time_ids(
|
333 |
+
original_size,
|
334 |
+
crops_coords_top_left,
|
335 |
+
target_size,
|
336 |
+
dtype=prompt_embeds.dtype,
|
337 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
338 |
+
)
|
339 |
+
if negative_original_size is not None and negative_target_size is not None:
|
340 |
+
negative_add_time_ids = self._get_add_time_ids(
|
341 |
+
negative_original_size,
|
342 |
+
negative_crops_coords_top_left,
|
343 |
+
negative_target_size,
|
344 |
+
dtype=prompt_embeds.dtype,
|
345 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
346 |
+
)
|
347 |
+
else:
|
348 |
+
negative_add_time_ids = add_time_ids
|
349 |
+
|
350 |
+
if False:#self.do_classifier_free_guidance:
|
351 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
352 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
353 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
354 |
+
|
355 |
+
prompt_embeds = prompt_embeds.to(device)
|
356 |
+
add_text_embeds = add_text_embeds.to(device)
|
357 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
358 |
+
|
359 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
360 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
361 |
+
ip_adapter_image,
|
362 |
+
ip_adapter_image_embeds,
|
363 |
+
device,
|
364 |
+
batch_size * num_images_per_prompt,
|
365 |
+
self.do_classifier_free_guidance,
|
366 |
+
)
|
367 |
+
|
368 |
+
# 8. Denoising loop
|
369 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
370 |
+
|
371 |
+
# 8.1 Apply denoising_end
|
372 |
+
if (
|
373 |
+
self.denoising_end is not None
|
374 |
+
and isinstance(self.denoising_end, float)
|
375 |
+
and self.denoising_end > 0
|
376 |
+
and self.denoising_end < 1
|
377 |
+
):
|
378 |
+
discrete_timestep_cutoff = int(
|
379 |
+
round(
|
380 |
+
self.scheduler.config.num_train_timesteps
|
381 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
382 |
+
)
|
383 |
+
)
|
384 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
385 |
+
timesteps = timesteps[:num_inference_steps]
|
386 |
+
|
387 |
+
# 9. Optionally get Guidance Scale Embedding
|
388 |
+
timestep_cond = None
|
389 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
390 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
391 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
392 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
393 |
+
).to(device=device, dtype=latents.dtype)
|
394 |
+
|
395 |
+
self._num_timesteps = len(timesteps)
|
396 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
397 |
+
for i, t in enumerate(timesteps):
|
398 |
+
if self.interrupt:
|
399 |
+
continue
|
400 |
+
|
401 |
+
# expand the latents if we are doing classifier free guidance
|
402 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
403 |
+
|
404 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
405 |
+
|
406 |
+
# predict the noise residual
|
407 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
408 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
409 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
410 |
+
noise_pred = self.unet(
|
411 |
+
latent_model_input,
|
412 |
+
t,
|
413 |
+
encoder_hidden_states=prompt_embeds,
|
414 |
+
timestep_cond=timestep_cond,
|
415 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
416 |
+
added_cond_kwargs=added_cond_kwargs,
|
417 |
+
return_dict=False,
|
418 |
+
)[0]
|
419 |
+
|
420 |
+
# perform guidance
|
421 |
+
if self.do_classifier_free_guidance:
|
422 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
423 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
424 |
+
|
425 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
426 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
427 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
428 |
+
|
429 |
+
# compute the previous noisy sample x_t -> x_t-1
|
430 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
431 |
+
|
432 |
+
if callback_on_step_end is not None:
|
433 |
+
callback_kwargs = {}
|
434 |
+
for k in callback_on_step_end_tensor_inputs:
|
435 |
+
callback_kwargs[k] = locals()[k]
|
436 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
437 |
+
|
438 |
+
latents = callback_outputs.pop("latents", latents)
|
439 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
440 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
441 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
442 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
443 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
444 |
+
)
|
445 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
446 |
+
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
447 |
+
|
448 |
+
# call the callback, if provided
|
449 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
450 |
+
progress_bar.update()
|
451 |
+
if callback is not None and i % callback_steps == 0:
|
452 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
453 |
+
callback(step_idx, t, latents)
|
454 |
+
|
455 |
+
if XLA_AVAILABLE:
|
456 |
+
xm.mark_step()
|
457 |
+
|
458 |
+
if not output_type == "latent":
|
459 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
460 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
461 |
+
|
462 |
+
if needs_upcasting:
|
463 |
+
self.upcast_vae()
|
464 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
465 |
+
|
466 |
+
# unscale/denormalize the latents
|
467 |
+
# denormalize with the mean and std if available and not None
|
468 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
469 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
470 |
+
if has_latents_mean and has_latents_std:
|
471 |
+
latents_mean = (
|
472 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
473 |
+
)
|
474 |
+
latents_std = (
|
475 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
476 |
+
)
|
477 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
478 |
+
else:
|
479 |
+
latents = latents / self.vae.config.scaling_factor
|
480 |
+
|
481 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
482 |
+
|
483 |
+
# cast back to fp16 if needed
|
484 |
+
if needs_upcasting:
|
485 |
+
self.vae.to(dtype=torch.float16)
|
486 |
+
else:
|
487 |
+
image = latents
|
488 |
+
|
489 |
+
if not output_type == "latent":
|
490 |
+
# apply watermark if available
|
491 |
+
if self.watermark is not None:
|
492 |
+
image = self.watermark.apply_watermark(image)
|
493 |
+
|
494 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
495 |
+
|
496 |
+
# Offload all models
|
497 |
+
self.maybe_free_model_hooks()
|
498 |
+
|
499 |
+
if not return_dict:
|
500 |
+
return (image,)
|
501 |
+
|
502 |
+
return StableDiffusionXLPipelineOutput(images=image)
|