Spaces:
Sleeping
Sleeping
File size: 8,092 Bytes
3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd fc5fa78 3de89cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
"""model.py module."""
from typing import Dict, List, Optional, Tuple
import tensorflow as tf
import numpy as np
import logging
import time
from ..api.client import FederatedHTTPClient
from .data_handler import FinancialDataHandler
class FederatedClient:
def __init__(self, client_id: str, config: Dict, server_url: Optional[str] = None):
"""Initialize the federated client."""
self.client_id = str(client_id)
self.config = config.get('client', {})
self.model = self._build_model()
self.data_handler = FinancialDataHandler(self.config)
# HTTP client for server communication
self.server_url = server_url or self.config.get('server_url', 'http://localhost:8080')
self.http_client = FederatedHTTPClient(self.server_url, self.client_id)
# Training state
self.registered = False
self.current_round = 0
def start(self):
"""Start the federated client process with server communication."""
logger = logging.getLogger(__name__)
logger.info(f"Client {self.client_id} starting...")
try:
# Wait for server to be available
if not self.http_client.wait_for_server():
raise ConnectionError(f"Cannot connect to server at {self.server_url}")
# Register with server
self._register_with_server()
# Main federated learning loop
self._federated_learning_loop()
except Exception as e:
logger.error(f"Error during client execution: {str(e)}")
raise
finally:
self.http_client.close()
def _register_with_server(self):
"""Register this client with the federated server"""
logger = logging.getLogger(__name__)
try:
# Generate local data to get client info
X, y = self._generate_dummy_data()
client_info = {
'dataset_size': len(X),
'model_params': self.model.count_params(),
'capabilities': ['training', 'inference']
}
response = self.http_client.register(client_info)
self.registered = True
logger.info(f"Successfully registered with server")
logger.info(f"Dataset size: {client_info['dataset_size']}")
logger.info(f"Model parameters: {client_info['model_params']:,}")
except Exception as e:
logger.error(f"Failed to register with server: {str(e)}")
raise
def _federated_learning_loop(self):
"""Main federated learning loop"""
logger = logging.getLogger(__name__)
while True:
try:
# Get training status from server
status = self.http_client.get_training_status()
if not status.get('training_active', True):
logger.info("Training completed on server")
break
server_round = status.get('current_round', 0)
if server_round > self.current_round:
self._participate_in_round(server_round)
self.current_round = server_round
time.sleep(5) # Check every 5 seconds
except Exception as e:
logger.error(f"Error in federated learning loop: {str(e)}")
time.sleep(10) # Wait longer on error
def _participate_in_round(self, round_num: int):
"""Participate in a federated learning round"""
logger = logging.getLogger(__name__)
logger.info(f"Participating in round {round_num}")
try:
# Get global model from server
model_response = self.http_client.get_global_model()
global_weights = model_response.get('model_weights')
if global_weights:
self.set_weights(global_weights)
logger.info("Updated local model with global weights")
# Generate/load local data
X, y = self._generate_dummy_data()
logger.info(f"Training on {len(X)} samples")
# Train locally
history = self.train_local((X, y))
# Prepare metrics
metrics = {
'dataset_size': len(X),
'final_loss': history['loss'][-1] if history['loss'] else 0.0,
'epochs_trained': len(history['loss']),
'round': round_num
}
# Submit update to server
local_weights = self.get_weights()
self.http_client.submit_model_update(local_weights, metrics)
logger.info(f"Round {round_num} completed - Final loss: {metrics['final_loss']:.4f}")
except Exception as e:
logger.error(f"Error in round {round_num}: {str(e)}")
raise
def _generate_dummy_data(self):
"""Generate dummy data for testing."""
try:
# Try to use the data handler for more realistic data
return self.data_handler.generate_synthetic_data(100)
except Exception:
# Fallback to simple dummy data
num_samples = 100
input_dim = 32 # Match with model's input dimension
# Generate input data
X = tf.random.normal((num_samples, input_dim))
# Generate target data (for this example, we'll predict the sum of inputs)
y = tf.reduce_sum(X, axis=1, keepdims=True)
return X.numpy(), y.numpy()
def _build_model(self):
"""Build the initial model architecture."""
input_dim = 32 # Match with data generation
model = tf.keras.Sequential([
tf.keras.layers.Input(shape=(input_dim,)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1) # Output layer for regression
])
model.compile(
optimizer=tf.keras.optimizers.Adam(
learning_rate=self.config.get('training', {}).get('learning_rate', 0.001)
),
loss='mse'
)
return model
def train_local(self, data):
"""Train the model on local data."""
logger = logging.getLogger(__name__)
X, y = data
# Ensure data is in the right format
if isinstance(X, np.ndarray):
X = tf.convert_to_tensor(X, dtype=tf.float32)
if isinstance(y, np.ndarray):
y = tf.convert_to_tensor(y, dtype=tf.float32)
# Log training parameters
logger.info(f"Training Parameters:")
logger.info(f"Input shape: {X.shape}")
logger.info(f"Output shape: {y.shape}")
logger.info(f"Batch size: {self.config.get('training', {}).get('batch_size', 32)}")
logger.info(f"Epochs: {self.config.get('training', {}).get('local_epochs', 5)}")
class LogCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
logger.debug(f"Epoch {epoch + 1} - loss: {logs['loss']:.4f}")
# Train the model
history = self.model.fit(
X, y,
batch_size=self.config.get('training', {}).get('batch_size', 32),
epochs=self.config.get('training', {}).get('local_epochs', 3),
verbose=0,
callbacks=[LogCallback()]
)
return history.history
def get_weights(self) -> List:
"""Get the model weights."""
return self.model.get_weights()
def set_weights(self, weights: List):
"""Update local model with global weights."""
self.model.set_weights(weights)
|