“Transcendental-Programmer”
fix : minor fixes
fc5fa78
raw
history blame
8.29 kB
"""model.py module."""
from typing import Dict, List, Optional, Tuple
import tensorflow as tf
import numpy as np
import logging
import time
from ..api.client import FederatedHTTPClient
from .data_handler import FinancialDataHandler
class FederatedClient:
def __init__(self, client_id: str, config: Dict, server_url: Optional[str] = None):
"""Initialize the federated client."""
self.client_id = str(client_id)
self.config = config.get('client', {})
self.model = self._build_model()
self.data_handler = FinancialDataHandler(config)
# HTTP client for server communication
self.server_url = server_url or self.config.get('server_url', 'http://localhost:8080')
self.http_client = FederatedHTTPClient(self.server_url, self.client_id)
# Training state
self.registered = False
self.current_round = 0
def start(self):
"""Start the federated client process with server communication."""
logger = logging.getLogger(__name__)
logger.info(f"Client {self.client_id} starting...")
try:
# Wait for server to be available
if not self.http_client.wait_for_server():
raise ConnectionError(f"Cannot connect to server at {self.server_url}")
# Register with server
self._register_with_server()
# Main federated learning loop
self._federated_learning_loop()
except Exception as e:
logger.error(f"Error during client execution: {str(e)}")
raise
finally:
self.http_client.close()
def _register_with_server(self):
"""Register this client with the federated server"""
logger = logging.getLogger(__name__)
try:
# Generate local data to get client info
X, y = self._generate_dummy_data()
client_info = {
'dataset_size': len(X),
'model_params': self.model.count_params(),
'capabilities': ['training', 'inference']
}
response = self.http_client.register(client_info)
self.registered = True
logger.info(f"Successfully registered with server")
logger.info(f"Dataset size: {client_info['dataset_size']}")
logger.info(f"Model parameters: {client_info['model_params']:,}")
except Exception as e:
logger.error(f"Failed to register with server: {str(e)}")
raise
def _federated_learning_loop(self):
"""Main federated learning loop"""
logger = logging.getLogger(__name__)
while True:
try:
# Get training status from server
status = self.http_client.get_training_status()
if not status.get('training_active', True):
logger.info("Training completed on server")
break
server_round = status.get('current_round', 0)
if server_round > self.current_round:
self._participate_in_round(server_round)
self.current_round = server_round
time.sleep(5) # Check every 5 seconds
except Exception as e:
logger.error(f"Error in federated learning loop: {str(e)}")
time.sleep(10) # Wait longer on error
def _participate_in_round(self, round_num: int):
"""Participate in a federated learning round"""
logger = logging.getLogger(__name__)
logger.info(f"Participating in round {round_num}")
try:
# Get global model from server
model_response = self.http_client.get_global_model()
global_weights = model_response.get('model_weights')
if global_weights:
self.set_weights(global_weights)
logger.info("Updated local model with global weights")
# Generate/load local data
X, y = self._generate_dummy_data()
logger.info(f"Training on {len(X)} samples")
# Train locally
history = self.train_local((X, y))
# Prepare metrics
metrics = {
'dataset_size': len(X),
'final_loss': history['loss'][-1] if history['loss'] else 0.0,
'epochs_trained': len(history['loss']),
'round': round_num
}
# Submit update to server
local_weights = self.get_weights()
self.http_client.submit_model_update(local_weights, metrics)
logger.info(f"Round {round_num} completed - Final loss: {metrics['final_loss']:.4f}")
except Exception as e:
logger.error(f"Error in round {round_num}: {str(e)}")
raise
def _generate_dummy_data(self):
"""Generate dummy data for testing."""
try:
# Try to use the data handler for more realistic data
return self.data_handler.generate_synthetic_data(100)
except Exception:
# Fallback to simple dummy data
num_samples = 100
input_dim = 32 # Match with model's input dimension
# Generate input data
X = tf.random.normal((num_samples, input_dim))
# Generate target data (for this example, we'll predict the sum of inputs)
y = tf.reduce_sum(X, axis=1, keepdims=True)
return X.numpy(), y.numpy()
def _build_model(self):
"""Build the initial model architecture."""
input_dim = 32 # Match with data generation
model = tf.keras.Sequential([
tf.keras.layers.Input(shape=(input_dim,)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1) # Output layer for regression
])
model.compile(
optimizer=tf.keras.optimizers.Adam(
learning_rate=self.config.get('training', {}).get('learning_rate', 0.001)
),
loss='mse'
)
return model
def train_local(self, data):
"""Train the model on local data."""
logger = logging.getLogger(__name__)
X, y = data
# Ensure data is in the right format
if isinstance(X, np.ndarray):
X = tf.convert_to_tensor(X, dtype=tf.float32)
if isinstance(y, np.ndarray):
y = tf.convert_to_tensor(y, dtype=tf.float32)
# Log training parameters
logger.info(f"Training Parameters:")
logger.info(f"Input shape: {X.shape}")
logger.info(f"Output shape: {y.shape}")
logger.info(f"Batch size: {self.config.get('training', {}).get('batch_size', 32)}")
logger.info(f"Epochs: {self.config.get('training', {}).get('local_epochs', 5)}")
class LogCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
logger.debug(f"Epoch {epoch + 1} - loss: {logs['loss']:.4f}")
# Train the model
history = self.model.fit(
X, y,
batch_size=self.config.get('training', {}).get('batch_size', 32),
epochs=self.config.get('training', {}).get('local_epochs', 3),
verbose=0,
callbacks=[LogCallback()]
)
return history.history
def get_weights(self) -> List:
"""Get the model weights."""
weights = self.model.get_weights()
# Convert to serializable format
return [w.tolist() for w in weights]
def set_weights(self, weights: List):
"""Update local model with global weights."""
# Convert from serializable format back to numpy arrays
np_weights = [np.array(w) for w in weights]
self.model.set_weights(np_weights)