Transcendental-Programmer commited on
Commit
80ee9ee
·
1 Parent(s): 135d1e4

fix : correct deployment files

Browse files
Files changed (4) hide show
  1. DEPLOYMENT.md +120 -0
  2. README.md +17 -0
  3. requirements-full.txt +41 -0
  4. requirements.txt +2 -43
DEPLOYMENT.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚀 Hugging Face Spaces Deployment Guide
2
+
3
+ ## Quick Deploy to HF Spaces (5 minutes)
4
+
5
+ ### Step 1: Prepare Your Repository
6
+
7
+ Your repository should have these files in the root:
8
+ - ✅ `app.py` - Streamlit application
9
+ - ✅ `requirements.txt` - Minimal dependencies (streamlit, requests, numpy)
10
+ - ✅ `README.md` - With HF Spaces config at the top
11
+
12
+ ### Step 2: Create HF Space
13
+
14
+ 1. Go to [huggingface.co/spaces](https://huggingface.co/spaces)
15
+ 2. Click "Create new Space"
16
+ 3. Fill in the details:
17
+ - **Owner**: `ArchCoder`
18
+ - **Space name**: `federated-credit-scoring`
19
+ - **Short description**: `Federated Learning Credit Scoring Demo with Privacy-Preserving Model Training`
20
+ - **License**: `MIT`
21
+ - **Space SDK**: `Streamlit` ⚠️ **NOT Docker**
22
+ - **Space hardware**: `Free`
23
+ - **Visibility**: `Public`
24
+
25
+ ### Step 3: Upload Files
26
+
27
+ **Option A: Direct Upload**
28
+ 1. Click "Create Space"
29
+ 2. Upload these files:
30
+ - `app.py`
31
+ - `requirements.txt`
32
+
33
+ **Option B: Connect GitHub (Recommended)**
34
+ 1. In Space Settings → "Repository"
35
+ 2. Connect your GitHub repo
36
+ 3. Enable "Auto-deploy on push"
37
+
38
+ ### Step 4: Wait for Build
39
+
40
+ - HF Spaces will install dependencies
41
+ - Build your Streamlit app
42
+ - Takes 2-3 minutes
43
+
44
+ ### Step 5: Access Your App
45
+
46
+ Your app will be live at:
47
+ ```
48
+ https://huggingface.co/spaces/ArchCoder/federated-credit-scoring
49
+ ```
50
+
51
+ ## 🎯 What Users Will See
52
+
53
+ - **Demo Mode**: Works immediately (no server needed)
54
+ - **Interactive Interface**: Enter features, get predictions
55
+ - **Educational Content**: Learn about federated learning
56
+ - **Professional UI**: Clean, modern design
57
+
58
+ ## 🔧 Troubleshooting
59
+
60
+ **"Missing app file" error:**
61
+ - Ensure `app.py` is in the root directory
62
+ - Check that SDK is set to `streamlit` (not docker)
63
+
64
+ **Build fails:**
65
+ - Check `requirements.txt` has minimal dependencies
66
+ - Ensure no heavy packages (tensorflow, etc.) in requirements.txt
67
+
68
+ **App doesn't load:**
69
+ - Check logs in HF Spaces
70
+ - Verify app.py has no syntax errors
71
+
72
+ ## 📁 Required Files
73
+
74
+ **`app.py`** (root level):
75
+ ```python
76
+ import streamlit as st
77
+ import requests
78
+ import numpy as np
79
+ import time
80
+
81
+ st.set_page_config(page_title="Federated Credit Scoring Demo", layout="centered")
82
+ # ... rest of your app code
83
+ ```
84
+
85
+ **`requirements.txt`** (root level):
86
+ ```
87
+ streamlit
88
+ requests
89
+ numpy
90
+ ```
91
+
92
+ **`README.md`** (with HF config at top):
93
+ ```yaml
94
+ ---
95
+ title: Federated Credit Scoring
96
+ emoji: 🚀
97
+ colorFrom: red
98
+ colorTo: red
99
+ sdk: streamlit
100
+ app_port: 8501
101
+ tags:
102
+ - streamlit
103
+ - federated-learning
104
+ - machine-learning
105
+ - privacy
106
+ pinned: false
107
+ short_description: Federated Learning Credit Scoring Demo with Privacy-Preserving Model Training
108
+ license: mit
109
+ ---
110
+ ```
111
+
112
+ ## 🎉 Success!
113
+
114
+ After deployment, you'll have:
115
+ - ✅ Live web app accessible to anyone
116
+ - ✅ No server setup required
117
+ - ✅ Professional presentation of your project
118
+ - ✅ Educational value for visitors
119
+
120
+ **Your federated learning demo will be live and working!** 🚀
README.md CHANGED
@@ -1,3 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Federated Learning for Privacy-Preserving Financial Data Generation with RAG Integration
2
 
3
  This project implements a federated learning framework combined with a Retrieval-Augmented Generation (RAG) system to generate privacy-preserving synthetic financial data.
 
1
+ ---
2
+ title: Federated Credit Scoring
3
+ emoji: 🚀
4
+ colorFrom: red
5
+ colorTo: red
6
+ sdk: streamlit
7
+ app_port: 8501
8
+ tags:
9
+ - streamlit
10
+ - federated-learning
11
+ - machine-learning
12
+ - privacy
13
+ pinned: false
14
+ short_description: Federated Learning Credit Scoring Demo with Privacy-Preserving Model Training
15
+ license: mit
16
+ ---
17
+
18
  # Federated Learning for Privacy-Preserving Financial Data Generation with RAG Integration
19
 
20
  This project implements a federated learning framework combined with a Retrieval-Augmented Generation (RAG) system to generate privacy-preserving synthetic financial data.
requirements-full.txt ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Core ML and Deep Learning
2
+ tensorflow>=2.8.0
3
+ numpy>=1.21.0
4
+ pandas>=1.3.0
5
+ scikit-learn>=1.0.0
6
+
7
+ # Web Framework and API
8
+ flask>=2.8.0
9
+ requests>=2.25.0
10
+ streamlit
11
+
12
+ # Configuration and utilities
13
+ pyyaml>=6.0
14
+ pathlib2>=2.3.0
15
+
16
+ # Development and testing
17
+ pytest>=6.0.0
18
+ pytest-cov>=2.0.0
19
+
20
+ # Logging and monitoring
21
+ python-json-logger>=2.0.0
22
+
23
+ # Optional: For advanced features
24
+ # tensorflow-federated>=0.20.0 # Uncomment if using TFF
25
+ # torch>=1.10.0 # Uncomment if using PyTorch
26
+
27
+ # RAG components
28
+ elasticsearch
29
+ faiss-cpu
30
+
31
+ # Privacy and security
32
+ tensorflow-privacy
33
+ pysyft
34
+
35
+ # API and web
36
+ fastapi
37
+ uvicorn
38
+
39
+ # Documentation
40
+ sphinx
41
+ sphinx-rtd-theme
requirements.txt CHANGED
@@ -1,44 +1,3 @@
1
- # Core ML and Deep Learning
2
- tensorflow>=2.8.0
3
- numpy>=1.21.0
4
- pandas>=1.3.0
5
- scikit-learn>=1.0.0
6
-
7
- # Web Framework and API
8
- flask>=2.0.0
9
- requests>=2.25.0
10
  streamlit
11
-
12
- # Configuration and utilities
13
- pyyaml>=6.0
14
- pathlib2>=2.3.0
15
-
16
- # Development and testing
17
- pytest>=6.0.0
18
- pytest-cov>=2.0.0
19
-
20
- # Logging and monitoring
21
- python-json-logger>=2.0.0
22
-
23
- # Optional: For advanced features
24
- # tensorflow-federated>=0.20.0 # Uncomment if using TFF
25
- # torch>=1.10.0 # Uncomment if using PyTorch
26
-
27
- # RAG components
28
- elasticsearch
29
- faiss-cpu
30
-
31
- # Privacy and security
32
- tensorflow-privacy
33
- pysyft
34
-
35
- # API and web
36
- fastapi
37
- uvicorn
38
-
39
- # Documentation
40
- sphinx
41
- sphinx-rtd-theme
42
-
43
- # Additional requirements
44
- pyyaml
 
 
 
 
 
 
 
 
 
 
1
  streamlit
2
+ requests
3
+ numpy