Spaces:
Sleeping
Sleeping
Transcendental-Programmer
commited on
Commit
ยท
b407fad
1
Parent(s):
45309a1
fix : fixed the client simulator
Browse files- README.md +19 -19
- app.py +68 -68
- webapp/streamlit_app.py +68 -68
README.md
CHANGED
|
@@ -17,13 +17,13 @@ license: mit
|
|
| 17 |
|
| 18 |
# Federated Learning for Privacy-Preserving Financial Data Generation with RAG Integration
|
| 19 |
|
| 20 |
-
This project implements a
|
| 21 |
|
| 22 |
-
##
|
| 23 |
|
| 24 |
**Try it now**: [Hugging Face Spaces](https://huggingface.co/spaces/ArchCoder/federated-credit-scoring)
|
| 25 |
|
| 26 |
-
##
|
| 27 |
|
| 28 |
- **Complete Federated Learning System**: Working server, clients, and web interface
|
| 29 |
- **Real-time Predictions**: Get credit score predictions from the federated model
|
|
@@ -33,9 +33,9 @@ This project implements a **complete federated learning framework** with a Retri
|
|
| 33 |
- **Educational**: Learn about federated learning concepts
|
| 34 |
- **Production Ready**: Docker and Kubernetes deployment support
|
| 35 |
|
| 36 |
-
##
|
| 37 |
|
| 38 |
-
### Option 1: Try the Demo
|
| 39 |
1. Visit the [Live Demo](https://huggingface.co/spaces/ArchCoder/federated-credit-scoring)
|
| 40 |
2. Enter customer features and get predictions
|
| 41 |
3. Learn about federated learning
|
|
@@ -72,7 +72,7 @@ streamlit run webapp/streamlit_app.py
|
|
| 72 |
python test_complete_system.py
|
| 73 |
```
|
| 74 |
|
| 75 |
-
##
|
| 76 |
|
| 77 |
### Web Application Features:
|
| 78 |
- **Demo Mode**: Works without server (perfect for HF Spaces)
|
|
@@ -91,7 +91,7 @@ python test_complete_system.py
|
|
| 91 |
6. **Global Model**: Updated model is distributed to all clients
|
| 92 |
7. **Prediction**: Users can get predictions from the global model
|
| 93 |
|
| 94 |
-
##
|
| 95 |
|
| 96 |
```
|
| 97 |
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
|
|
@@ -107,7 +107,7 @@ python test_complete_system.py
|
|
| 107 |
โโโโโโโโโโโโโโโโโโโ
|
| 108 |
```
|
| 109 |
|
| 110 |
-
##
|
| 111 |
|
| 112 |
```
|
| 113 |
FinFedRAG-Financial-Federated-RAG/
|
|
@@ -129,7 +129,7 @@ FinFedRAG-Financial-Federated-RAG/
|
|
| 129 |
โโโ test_complete_system.py # End-to-end system test
|
| 130 |
```
|
| 131 |
|
| 132 |
-
##
|
| 133 |
|
| 134 |
### Server Configuration (`config/server_config.yaml`)
|
| 135 |
```yaml
|
|
@@ -159,7 +159,7 @@ client:
|
|
| 159 |
input_dim: 32
|
| 160 |
```
|
| 161 |
|
| 162 |
-
##
|
| 163 |
|
| 164 |
Run the complete system test:
|
| 165 |
```bash
|
|
@@ -167,12 +167,12 @@ python test_complete_system.py
|
|
| 167 |
```
|
| 168 |
|
| 169 |
This will test:
|
| 170 |
-
-
|
| 171 |
-
-
|
| 172 |
-
-
|
| 173 |
-
-
|
| 174 |
|
| 175 |
-
##
|
| 176 |
|
| 177 |
### Hugging Face Spaces (Recommended)
|
| 178 |
1. Fork this repository
|
|
@@ -196,14 +196,14 @@ streamlit run webapp/streamlit_app.py
|
|
| 196 |
docker-compose up
|
| 197 |
```
|
| 198 |
|
| 199 |
-
##
|
| 200 |
|
| 201 |
- **Model Accuracy**: 85%+ across federated rounds
|
| 202 |
- **Response Time**: <1 second for predictions
|
| 203 |
- **Scalability**: Supports 10+ concurrent clients
|
| 204 |
- **Privacy**: Zero raw data sharing
|
| 205 |
|
| 206 |
-
##
|
| 207 |
|
| 208 |
1. Fork the repository
|
| 209 |
2. Create a feature branch
|
|
@@ -211,11 +211,11 @@ docker-compose up
|
|
| 211 |
4. Add tests
|
| 212 |
5. Submit a pull request
|
| 213 |
|
| 214 |
-
##
|
| 215 |
|
| 216 |
MIT License - see LICENSE file for details.
|
| 217 |
|
| 218 |
-
##
|
| 219 |
|
| 220 |
- TensorFlow for the ML framework
|
| 221 |
- Streamlit for the web interface
|
|
|
|
| 17 |
|
| 18 |
# Federated Learning for Privacy-Preserving Financial Data Generation with RAG Integration
|
| 19 |
|
| 20 |
+
This project implements a complete federated learning framework with a Retrieval-Augmented Generation (RAG) system for privacy-preserving synthetic financial data generation. The system includes a working server, multiple clients, and an interactive web application.
|
| 21 |
|
| 22 |
+
## Live Demo
|
| 23 |
|
| 24 |
**Try it now**: [Hugging Face Spaces](https://huggingface.co/spaces/ArchCoder/federated-credit-scoring)
|
| 25 |
|
| 26 |
+
## Features
|
| 27 |
|
| 28 |
- **Complete Federated Learning System**: Working server, clients, and web interface
|
| 29 |
- **Real-time Predictions**: Get credit score predictions from the federated model
|
|
|
|
| 33 |
- **Educational**: Learn about federated learning concepts
|
| 34 |
- **Production Ready**: Docker and Kubernetes deployment support
|
| 35 |
|
| 36 |
+
## Quick Start
|
| 37 |
|
| 38 |
+
### Option 1: Try the Demo
|
| 39 |
1. Visit the [Live Demo](https://huggingface.co/spaces/ArchCoder/federated-credit-scoring)
|
| 40 |
2. Enter customer features and get predictions
|
| 41 |
3. Learn about federated learning
|
|
|
|
| 72 |
python test_complete_system.py
|
| 73 |
```
|
| 74 |
|
| 75 |
+
## How to Use
|
| 76 |
|
| 77 |
### Web Application Features:
|
| 78 |
- **Demo Mode**: Works without server (perfect for HF Spaces)
|
|
|
|
| 91 |
6. **Global Model**: Updated model is distributed to all clients
|
| 92 |
7. **Prediction**: Users can get predictions from the global model
|
| 93 |
|
| 94 |
+
## System Architecture
|
| 95 |
|
| 96 |
```
|
| 97 |
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
|
|
|
|
| 107 |
โโโโโโโโโโโโโโโโโโโ
|
| 108 |
```
|
| 109 |
|
| 110 |
+
## Project Structure
|
| 111 |
|
| 112 |
```
|
| 113 |
FinFedRAG-Financial-Federated-RAG/
|
|
|
|
| 129 |
โโโ test_complete_system.py # End-to-end system test
|
| 130 |
```
|
| 131 |
|
| 132 |
+
## Configuration
|
| 133 |
|
| 134 |
### Server Configuration (`config/server_config.yaml`)
|
| 135 |
```yaml
|
|
|
|
| 159 |
input_dim: 32
|
| 160 |
```
|
| 161 |
|
| 162 |
+
## Testing
|
| 163 |
|
| 164 |
Run the complete system test:
|
| 165 |
```bash
|
|
|
|
| 167 |
```
|
| 168 |
|
| 169 |
This will test:
|
| 170 |
+
- Server health
|
| 171 |
+
- Client registration
|
| 172 |
+
- Training status
|
| 173 |
+
- Prediction functionality
|
| 174 |
|
| 175 |
+
## Deployment
|
| 176 |
|
| 177 |
### Hugging Face Spaces (Recommended)
|
| 178 |
1. Fork this repository
|
|
|
|
| 196 |
docker-compose up
|
| 197 |
```
|
| 198 |
|
| 199 |
+
## Performance
|
| 200 |
|
| 201 |
- **Model Accuracy**: 85%+ across federated rounds
|
| 202 |
- **Response Time**: <1 second for predictions
|
| 203 |
- **Scalability**: Supports 10+ concurrent clients
|
| 204 |
- **Privacy**: Zero raw data sharing
|
| 205 |
|
| 206 |
+
## Contributing
|
| 207 |
|
| 208 |
1. Fork the repository
|
| 209 |
2. Create a feature branch
|
|
|
|
| 211 |
4. Add tests
|
| 212 |
5. Submit a pull request
|
| 213 |
|
| 214 |
+
## License
|
| 215 |
|
| 216 |
MIT License - see LICENSE file for details.
|
| 217 |
|
| 218 |
+
## Acknowledgments
|
| 219 |
|
| 220 |
- TensorFlow for the ML framework
|
| 221 |
- Streamlit for the web interface
|
app.py
CHANGED
|
@@ -6,6 +6,73 @@ import threading
|
|
| 6 |
import json
|
| 7 |
from datetime import datetime
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
st.set_page_config(page_title="Federated Credit Scoring Demo", layout="centered")
|
| 10 |
st.title("Federated Credit Scoring Demo (Federated Learning)")
|
| 11 |
|
|
@@ -172,71 +239,4 @@ if st.session_state.client_simulator and not DEMO_MODE:
|
|
| 172 |
st.markdown("---")
|
| 173 |
st.markdown("""
|
| 174 |
*This is a demonstration of federated learning concepts. For full functionality, run the federated server and clients locally.*
|
| 175 |
-
""")
|
| 176 |
-
|
| 177 |
-
# Client Simulator Class
|
| 178 |
-
class ClientSimulator:
|
| 179 |
-
def __init__(self, server_url):
|
| 180 |
-
self.server_url = server_url
|
| 181 |
-
self.client_id = f"web_client_{int(time.time())}"
|
| 182 |
-
self.is_running = False
|
| 183 |
-
self.thread = None
|
| 184 |
-
self.last_update = "Never"
|
| 185 |
-
|
| 186 |
-
def start(self):
|
| 187 |
-
self.is_running = True
|
| 188 |
-
self.thread = threading.Thread(target=self._run_client, daemon=True)
|
| 189 |
-
self.thread.start()
|
| 190 |
-
|
| 191 |
-
def stop(self):
|
| 192 |
-
self.is_running = False
|
| 193 |
-
|
| 194 |
-
def _run_client(self):
|
| 195 |
-
try:
|
| 196 |
-
# Register with server
|
| 197 |
-
client_info = {
|
| 198 |
-
'dataset_size': 100,
|
| 199 |
-
'model_params': 10000,
|
| 200 |
-
'capabilities': ['training', 'inference']
|
| 201 |
-
}
|
| 202 |
-
|
| 203 |
-
resp = requests.post(f"{self.server_url}/register",
|
| 204 |
-
json={'client_id': self.client_id, 'client_info': client_info})
|
| 205 |
-
|
| 206 |
-
if resp.status_code == 200:
|
| 207 |
-
st.session_state.training_history.append({
|
| 208 |
-
'round': 0,
|
| 209 |
-
'active_clients': 1,
|
| 210 |
-
'clients_ready': 0,
|
| 211 |
-
'timestamp': datetime.now()
|
| 212 |
-
})
|
| 213 |
-
|
| 214 |
-
# Simulate client participation
|
| 215 |
-
while self.is_running:
|
| 216 |
-
try:
|
| 217 |
-
# Get training status
|
| 218 |
-
status = requests.get(f"{self.server_url}/training_status")
|
| 219 |
-
if status.status_code == 200:
|
| 220 |
-
data = status.json()
|
| 221 |
-
|
| 222 |
-
# Update training history
|
| 223 |
-
st.session_state.training_history.append({
|
| 224 |
-
'round': data.get('current_round', 0),
|
| 225 |
-
'active_clients': data.get('active_clients', 0),
|
| 226 |
-
'clients_ready': data.get('clients_ready', 0),
|
| 227 |
-
'timestamp': datetime.now()
|
| 228 |
-
})
|
| 229 |
-
|
| 230 |
-
# Keep only last 50 entries
|
| 231 |
-
if len(st.session_state.training_history) > 50:
|
| 232 |
-
st.session_state.training_history = st.session_state.training_history[-50:]
|
| 233 |
-
|
| 234 |
-
time.sleep(5) # Check every 5 seconds
|
| 235 |
-
|
| 236 |
-
except Exception as e:
|
| 237 |
-
print(f"Client simulator error: {e}")
|
| 238 |
-
time.sleep(10)
|
| 239 |
-
|
| 240 |
-
except Exception as e:
|
| 241 |
-
print(f"Failed to start client simulator: {e}")
|
| 242 |
-
self.is_running = False
|
|
|
|
| 6 |
import json
|
| 7 |
from datetime import datetime
|
| 8 |
|
| 9 |
+
# Client Simulator Class (moved to top)
|
| 10 |
+
class ClientSimulator:
|
| 11 |
+
def __init__(self, server_url):
|
| 12 |
+
self.server_url = server_url
|
| 13 |
+
self.client_id = f"web_client_{int(time.time())}"
|
| 14 |
+
self.is_running = False
|
| 15 |
+
self.thread = None
|
| 16 |
+
self.last_update = "Never"
|
| 17 |
+
|
| 18 |
+
def start(self):
|
| 19 |
+
self.is_running = True
|
| 20 |
+
self.thread = threading.Thread(target=self._run_client, daemon=True)
|
| 21 |
+
self.thread.start()
|
| 22 |
+
|
| 23 |
+
def stop(self):
|
| 24 |
+
self.is_running = False
|
| 25 |
+
|
| 26 |
+
def _run_client(self):
|
| 27 |
+
try:
|
| 28 |
+
# Register with server
|
| 29 |
+
client_info = {
|
| 30 |
+
'dataset_size': 100,
|
| 31 |
+
'model_params': 10000,
|
| 32 |
+
'capabilities': ['training', 'inference']
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
resp = requests.post(f"{self.server_url}/register",
|
| 36 |
+
json={'client_id': self.client_id, 'client_info': client_info})
|
| 37 |
+
|
| 38 |
+
if resp.status_code == 200:
|
| 39 |
+
st.session_state.training_history.append({
|
| 40 |
+
'round': 0,
|
| 41 |
+
'active_clients': 1,
|
| 42 |
+
'clients_ready': 0,
|
| 43 |
+
'timestamp': datetime.now()
|
| 44 |
+
})
|
| 45 |
+
|
| 46 |
+
# Simulate client participation
|
| 47 |
+
while self.is_running:
|
| 48 |
+
try:
|
| 49 |
+
# Get training status
|
| 50 |
+
status = requests.get(f"{self.server_url}/training_status")
|
| 51 |
+
if status.status_code == 200:
|
| 52 |
+
data = status.json()
|
| 53 |
+
|
| 54 |
+
# Update training history
|
| 55 |
+
st.session_state.training_history.append({
|
| 56 |
+
'round': data.get('current_round', 0),
|
| 57 |
+
'active_clients': data.get('active_clients', 0),
|
| 58 |
+
'clients_ready': data.get('clients_ready', 0),
|
| 59 |
+
'timestamp': datetime.now()
|
| 60 |
+
})
|
| 61 |
+
|
| 62 |
+
# Keep only last 50 entries
|
| 63 |
+
if len(st.session_state.training_history) > 50:
|
| 64 |
+
st.session_state.training_history = st.session_state.training_history[-50:]
|
| 65 |
+
|
| 66 |
+
time.sleep(5) # Check every 5 seconds
|
| 67 |
+
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"Client simulator error: {e}")
|
| 70 |
+
time.sleep(10)
|
| 71 |
+
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print(f"Failed to start client simulator: {e}")
|
| 74 |
+
self.is_running = False
|
| 75 |
+
|
| 76 |
st.set_page_config(page_title="Federated Credit Scoring Demo", layout="centered")
|
| 77 |
st.title("Federated Credit Scoring Demo (Federated Learning)")
|
| 78 |
|
|
|
|
| 239 |
st.markdown("---")
|
| 240 |
st.markdown("""
|
| 241 |
*This is a demonstration of federated learning concepts. For full functionality, run the federated server and clients locally.*
|
| 242 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
webapp/streamlit_app.py
CHANGED
|
@@ -6,6 +6,73 @@ import threading
|
|
| 6 |
import json
|
| 7 |
from datetime import datetime
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
st.set_page_config(page_title="Federated Credit Scoring Demo", layout="centered")
|
| 10 |
st.title("Federated Credit Scoring Demo (Federated Learning)")
|
| 11 |
|
|
@@ -172,71 +239,4 @@ if st.session_state.client_simulator and not DEMO_MODE:
|
|
| 172 |
st.markdown("---")
|
| 173 |
st.markdown("""
|
| 174 |
*This is a demonstration of federated learning concepts. For full functionality, run the federated server and clients locally.*
|
| 175 |
-
""")
|
| 176 |
-
|
| 177 |
-
# Client Simulator Class
|
| 178 |
-
class ClientSimulator:
|
| 179 |
-
def __init__(self, server_url):
|
| 180 |
-
self.server_url = server_url
|
| 181 |
-
self.client_id = f"web_client_{int(time.time())}"
|
| 182 |
-
self.is_running = False
|
| 183 |
-
self.thread = None
|
| 184 |
-
self.last_update = "Never"
|
| 185 |
-
|
| 186 |
-
def start(self):
|
| 187 |
-
self.is_running = True
|
| 188 |
-
self.thread = threading.Thread(target=self._run_client, daemon=True)
|
| 189 |
-
self.thread.start()
|
| 190 |
-
|
| 191 |
-
def stop(self):
|
| 192 |
-
self.is_running = False
|
| 193 |
-
|
| 194 |
-
def _run_client(self):
|
| 195 |
-
try:
|
| 196 |
-
# Register with server
|
| 197 |
-
client_info = {
|
| 198 |
-
'dataset_size': 100,
|
| 199 |
-
'model_params': 10000,
|
| 200 |
-
'capabilities': ['training', 'inference']
|
| 201 |
-
}
|
| 202 |
-
|
| 203 |
-
resp = requests.post(f"{self.server_url}/register",
|
| 204 |
-
json={'client_id': self.client_id, 'client_info': client_info})
|
| 205 |
-
|
| 206 |
-
if resp.status_code == 200:
|
| 207 |
-
st.session_state.training_history.append({
|
| 208 |
-
'round': 0,
|
| 209 |
-
'active_clients': 1,
|
| 210 |
-
'clients_ready': 0,
|
| 211 |
-
'timestamp': datetime.now()
|
| 212 |
-
})
|
| 213 |
-
|
| 214 |
-
# Simulate client participation
|
| 215 |
-
while self.is_running:
|
| 216 |
-
try:
|
| 217 |
-
# Get training status
|
| 218 |
-
status = requests.get(f"{self.server_url}/training_status")
|
| 219 |
-
if status.status_code == 200:
|
| 220 |
-
data = status.json()
|
| 221 |
-
|
| 222 |
-
# Update training history
|
| 223 |
-
st.session_state.training_history.append({
|
| 224 |
-
'round': data.get('current_round', 0),
|
| 225 |
-
'active_clients': data.get('active_clients', 0),
|
| 226 |
-
'clients_ready': data.get('clients_ready', 0),
|
| 227 |
-
'timestamp': datetime.now()
|
| 228 |
-
})
|
| 229 |
-
|
| 230 |
-
# Keep only last 50 entries
|
| 231 |
-
if len(st.session_state.training_history) > 50:
|
| 232 |
-
st.session_state.training_history = st.session_state.training_history[-50:]
|
| 233 |
-
|
| 234 |
-
time.sleep(5) # Check every 5 seconds
|
| 235 |
-
|
| 236 |
-
except Exception as e:
|
| 237 |
-
print(f"Client simulator error: {e}")
|
| 238 |
-
time.sleep(10)
|
| 239 |
-
|
| 240 |
-
except Exception as e:
|
| 241 |
-
print(f"Failed to start client simulator: {e}")
|
| 242 |
-
self.is_running = False
|
|
|
|
| 6 |
import json
|
| 7 |
from datetime import datetime
|
| 8 |
|
| 9 |
+
# Client Simulator Class (moved to top)
|
| 10 |
+
class ClientSimulator:
|
| 11 |
+
def __init__(self, server_url):
|
| 12 |
+
self.server_url = server_url
|
| 13 |
+
self.client_id = f"web_client_{int(time.time())}"
|
| 14 |
+
self.is_running = False
|
| 15 |
+
self.thread = None
|
| 16 |
+
self.last_update = "Never"
|
| 17 |
+
|
| 18 |
+
def start(self):
|
| 19 |
+
self.is_running = True
|
| 20 |
+
self.thread = threading.Thread(target=self._run_client, daemon=True)
|
| 21 |
+
self.thread.start()
|
| 22 |
+
|
| 23 |
+
def stop(self):
|
| 24 |
+
self.is_running = False
|
| 25 |
+
|
| 26 |
+
def _run_client(self):
|
| 27 |
+
try:
|
| 28 |
+
# Register with server
|
| 29 |
+
client_info = {
|
| 30 |
+
'dataset_size': 100,
|
| 31 |
+
'model_params': 10000,
|
| 32 |
+
'capabilities': ['training', 'inference']
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
resp = requests.post(f"{self.server_url}/register",
|
| 36 |
+
json={'client_id': self.client_id, 'client_info': client_info})
|
| 37 |
+
|
| 38 |
+
if resp.status_code == 200:
|
| 39 |
+
st.session_state.training_history.append({
|
| 40 |
+
'round': 0,
|
| 41 |
+
'active_clients': 1,
|
| 42 |
+
'clients_ready': 0,
|
| 43 |
+
'timestamp': datetime.now()
|
| 44 |
+
})
|
| 45 |
+
|
| 46 |
+
# Simulate client participation
|
| 47 |
+
while self.is_running:
|
| 48 |
+
try:
|
| 49 |
+
# Get training status
|
| 50 |
+
status = requests.get(f"{self.server_url}/training_status")
|
| 51 |
+
if status.status_code == 200:
|
| 52 |
+
data = status.json()
|
| 53 |
+
|
| 54 |
+
# Update training history
|
| 55 |
+
st.session_state.training_history.append({
|
| 56 |
+
'round': data.get('current_round', 0),
|
| 57 |
+
'active_clients': data.get('active_clients', 0),
|
| 58 |
+
'clients_ready': data.get('clients_ready', 0),
|
| 59 |
+
'timestamp': datetime.now()
|
| 60 |
+
})
|
| 61 |
+
|
| 62 |
+
# Keep only last 50 entries
|
| 63 |
+
if len(st.session_state.training_history) > 50:
|
| 64 |
+
st.session_state.training_history = st.session_state.training_history[-50:]
|
| 65 |
+
|
| 66 |
+
time.sleep(5) # Check every 5 seconds
|
| 67 |
+
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"Client simulator error: {e}")
|
| 70 |
+
time.sleep(10)
|
| 71 |
+
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print(f"Failed to start client simulator: {e}")
|
| 74 |
+
self.is_running = False
|
| 75 |
+
|
| 76 |
st.set_page_config(page_title="Federated Credit Scoring Demo", layout="centered")
|
| 77 |
st.title("Federated Credit Scoring Demo (Federated Learning)")
|
| 78 |
|
|
|
|
| 239 |
st.markdown("---")
|
| 240 |
st.markdown("""
|
| 241 |
*This is a demonstration of federated learning concepts. For full functionality, run the federated server and clients locally.*
|
| 242 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|