Spaces:
Sleeping
Sleeping
Transcendental-Programmer
commited on
Commit
·
e7b58b1
1
Parent(s):
f0b383a
feat: add streamlit app
Browse files- README.md +39 -0
- requirements.txt +9 -9
- src/api/server.py +36 -0
- webapp/streamlit_app.py +57 -0
README.md
CHANGED
@@ -30,3 +30,42 @@ MIT
|
|
30 |
|
31 |
## Contributing
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
## Contributing
|
32 |
|
33 |
+
|
34 |
+
## Federated Credit Scoring Demo (with Web App)
|
35 |
+
|
36 |
+
This project includes a demo where multiple banks (clients) collaboratively train a credit scoring model using federated learning. A Streamlit web app allows you to enter customer features and get a credit score prediction from the federated model.
|
37 |
+
|
38 |
+
### Quick Start
|
39 |
+
|
40 |
+
1. **Install dependencies**
|
41 |
+
|
42 |
+
```bash
|
43 |
+
pip install -r requirements.txt
|
44 |
+
```
|
45 |
+
|
46 |
+
2. **Start the Federated Server**
|
47 |
+
|
48 |
+
```bash
|
49 |
+
python -m src.main --mode server --config config/server_config.yaml
|
50 |
+
```
|
51 |
+
|
52 |
+
3. **Start at least two Clients (in separate terminals)**
|
53 |
+
|
54 |
+
```bash
|
55 |
+
python -m src.main --mode client --config config/client_config.yaml
|
56 |
+
```
|
57 |
+
|
58 |
+
4. **Run the Web App**
|
59 |
+
|
60 |
+
```bash
|
61 |
+
streamlit run webapp/streamlit_app.py
|
62 |
+
```
|
63 |
+
|
64 |
+
5. **Use the Web App**
|
65 |
+
- Enter 32 features (dummy values are fine for demo)
|
66 |
+
- Click "Predict Credit Score" to get a prediction from the federated model
|
67 |
+
- View training progress in the app
|
68 |
+
|
69 |
+
*For best results, keep the server and at least two clients running in parallel.*
|
70 |
+
|
71 |
+
---
|
requirements.txt
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
# Core ML frameworks
|
2 |
-
tensorflow
|
3 |
tensorflow-federated
|
4 |
-
torch
|
5 |
transformers
|
6 |
|
7 |
# Data processing
|
8 |
-
pandas
|
9 |
-
numpy
|
10 |
scikit-learn
|
11 |
|
12 |
# RAG components
|
@@ -18,14 +18,14 @@ tensorflow-privacy
|
|
18 |
pysyft
|
19 |
|
20 |
# API and web
|
21 |
-
flask
|
22 |
fastapi
|
23 |
uvicorn
|
24 |
-
requests
|
|
|
25 |
|
26 |
# Configuration and utilities
|
27 |
-
pyyaml
|
28 |
-
|
29 |
# Testing and development
|
30 |
pytest
|
31 |
black
|
@@ -37,4 +37,4 @@ sphinx
|
|
37 |
sphinx-rtd-theme
|
38 |
|
39 |
# Additional requirements
|
40 |
-
pyyaml
|
|
|
1 |
# Core ML frameworks
|
2 |
+
tensorflow
|
3 |
tensorflow-federated
|
4 |
+
torch
|
5 |
transformers
|
6 |
|
7 |
# Data processing
|
8 |
+
pandas
|
9 |
+
numpy
|
10 |
scikit-learn
|
11 |
|
12 |
# RAG components
|
|
|
18 |
pysyft
|
19 |
|
20 |
# API and web
|
21 |
+
flask
|
22 |
fastapi
|
23 |
uvicorn
|
24 |
+
requests
|
25 |
+
streamlit
|
26 |
|
27 |
# Configuration and utilities
|
28 |
+
pyyaml
|
|
|
29 |
# Testing and development
|
30 |
pytest
|
31 |
black
|
|
|
37 |
sphinx-rtd-theme
|
38 |
|
39 |
# Additional requirements
|
40 |
+
pyyaml
|
src/api/server.py
CHANGED
@@ -149,6 +149,42 @@ class FederatedAPI:
|
|
149 |
logger.error(f"Error processing RAG query: {str(e)}")
|
150 |
return jsonify({'error': str(e)}), 500
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
def run(self, debug: bool = False):
|
153 |
"""Run the API server"""
|
154 |
logger.info(f"Starting Federated API server on {self.host}:{self.port}")
|
|
|
149 |
logger.error(f"Error processing RAG query: {str(e)}")
|
150 |
return jsonify({'error': str(e)}), 500
|
151 |
|
152 |
+
@self.app.route('/predict', methods=['POST'])
|
153 |
+
def predict():
|
154 |
+
"""Predict using the current global model."""
|
155 |
+
try:
|
156 |
+
data = request.get_json()
|
157 |
+
features = data.get('features')
|
158 |
+
if features is None or not isinstance(features, list) or len(features) != 32:
|
159 |
+
return jsonify({'error': 'features must be a list of 32 floats'}), 400
|
160 |
+
|
161 |
+
# Get global model weights
|
162 |
+
model_weights = self.coordinator.get_global_model()
|
163 |
+
if model_weights is None:
|
164 |
+
return jsonify({'error': 'Global model not available yet'}), 503
|
165 |
+
|
166 |
+
# Build the model (same as client)
|
167 |
+
import tensorflow as tf
|
168 |
+
import numpy as np
|
169 |
+
input_dim = 32
|
170 |
+
model = tf.keras.Sequential([
|
171 |
+
tf.keras.layers.Input(shape=(input_dim,)),
|
172 |
+
tf.keras.layers.Dense(128, activation='relu'),
|
173 |
+
tf.keras.layers.Dense(64, activation='relu'),
|
174 |
+
tf.keras.layers.Dense(1)
|
175 |
+
])
|
176 |
+
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse')
|
177 |
+
model.set_weights([np.array(w) for w in model_weights])
|
178 |
+
|
179 |
+
# Prepare input and predict
|
180 |
+
x = np.array(features, dtype=np.float32).reshape(1, -1)
|
181 |
+
pred = model.predict(x)
|
182 |
+
prediction = float(pred[0, 0])
|
183 |
+
return jsonify({'prediction': prediction})
|
184 |
+
except Exception as e:
|
185 |
+
logger.error(f"Error in prediction endpoint: {str(e)}")
|
186 |
+
return jsonify({'error': str(e)}), 500
|
187 |
+
|
188 |
def run(self, debug: bool = False):
|
189 |
"""Run the API server"""
|
190 |
logger.info(f"Starting Federated API server on {self.host}:{self.port}")
|
webapp/streamlit_app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
st.set_page_config(page_title="Federated Credit Scoring Demo", layout="centered")
|
6 |
+
st.title("Federated Credit Scoring Demo (Federated Learning)")
|
7 |
+
|
8 |
+
SERVER_URL = st.sidebar.text_input("Server URL", value="http://localhost:8080")
|
9 |
+
|
10 |
+
st.markdown("""
|
11 |
+
This demo shows how multiple banks can collaboratively train a credit scoring model using federated learning, without sharing raw data.
|
12 |
+
Enter customer features below to get a credit score prediction from the federated model.
|
13 |
+
""")
|
14 |
+
|
15 |
+
# --- Feature Input Form ---
|
16 |
+
st.header("Enter Customer Features")
|
17 |
+
with st.form("feature_form"):
|
18 |
+
features = []
|
19 |
+
cols = st.columns(4)
|
20 |
+
for i in range(32):
|
21 |
+
with cols[i % 4]:
|
22 |
+
val = st.number_input(f"Feature {i+1}", value=0.0, format="%.4f", key=f"f_{i}")
|
23 |
+
features.append(val)
|
24 |
+
submitted = st.form_submit_button("Predict Credit Score")
|
25 |
+
|
26 |
+
# --- Prediction ---
|
27 |
+
prediction = None
|
28 |
+
if submitted:
|
29 |
+
try:
|
30 |
+
resp = requests.post(f"{SERVER_URL}/predict", json={"features": features}, timeout=10)
|
31 |
+
if resp.status_code == 200:
|
32 |
+
prediction = resp.json().get("prediction")
|
33 |
+
st.success(f"Predicted Credit Score: {prediction:.2f}")
|
34 |
+
else:
|
35 |
+
st.error(f"Prediction failed: {resp.json().get('error', 'Unknown error')}")
|
36 |
+
except Exception as e:
|
37 |
+
st.error(f"Error connecting to server: {e}")
|
38 |
+
|
39 |
+
# --- Training Progress ---
|
40 |
+
st.header("Federated Training Progress")
|
41 |
+
try:
|
42 |
+
status = requests.get(f"{SERVER_URL}/training_status", timeout=5)
|
43 |
+
if status.status_code == 200:
|
44 |
+
data = status.json()
|
45 |
+
st.write(f"Current Round: {data.get('current_round', 0)} / {data.get('total_rounds', 10)}")
|
46 |
+
st.write(f"Active Clients: {data.get('active_clients', 0)}")
|
47 |
+
st.write(f"Clients Ready: {data.get('clients_ready', 0)}")
|
48 |
+
st.write(f"Training Active: {data.get('training_active', False)}")
|
49 |
+
else:
|
50 |
+
st.warning("Could not fetch training status.")
|
51 |
+
except Exception as e:
|
52 |
+
st.warning(f"Could not connect to server for training status: {e}")
|
53 |
+
|
54 |
+
st.markdown("---")
|
55 |
+
st.markdown("""
|
56 |
+
*This is a demo. All data is synthetic. For best results, run the federated server and at least two clients in parallel.*
|
57 |
+
""")
|