Spaces:
Running
Running
File size: 8,999 Bytes
20eee66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from typing import Dict, Any, List
import pandas as pd
from datetime import datetime
def create_price_chart(data: Dict[str, Any], symbol: str) -> str:
try:
if not data or "prices" not in data:
return f"<div style='padding: 20px; text-align: center;'>No price data available for {symbol.upper()}</div>"
prices = data["prices"]
volumes = data.get("total_volumes", [])
if not prices:
return f"<div style='padding: 20px; text-align: center;'>No price history found for {symbol.upper()}</div>"
df = pd.DataFrame(prices, columns=["timestamp", "price"])
df["datetime"] = pd.to_datetime(df["timestamp"], unit="ms")
fig = make_subplots(
rows=2, cols=1,
shared_xaxes=True,
vertical_spacing=0.05,
subplot_titles=[f"{symbol.upper()} Price Chart", "Volume"],
row_width=[0.7, 0.3]
)
fig.add_trace(
go.Scatter(
x=df["datetime"],
y=df["price"],
mode="lines",
name="Price",
line=dict(color="#00D4AA", width=2),
hovertemplate="<b>%{y:$,.2f}</b><br>%{x}<extra></extra>"
),
row=1, col=1
)
if volumes:
vol_df = pd.DataFrame(volumes, columns=["timestamp", "volume"])
vol_df["datetime"] = pd.to_datetime(vol_df["timestamp"], unit="ms")
fig.add_trace(
go.Bar(
x=vol_df["datetime"],
y=vol_df["volume"],
name="Volume",
marker_color="#FF6B6B",
opacity=0.7,
hovertemplate="<b>$%{y:,.0f}</b><br>%{x}<extra></extra>"
),
row=2, col=1
)
current_price = df["price"].iloc[-1]
price_change = ((df["price"].iloc[-1] - df["price"].iloc[0]) / df["price"].iloc[0]) * 100
fig.update_layout(
title=dict(
text=f"{symbol.upper()} - ${current_price:,.4f} ({price_change:+.2f}%)",
x=0.5,
font=dict(size=20, color="#FFFFFF")
),
xaxis_title="Date",
yaxis_title="Price (USD)",
template="plotly_dark",
showlegend=False,
height=600,
margin=dict(l=60, r=60, t=80, b=60),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)"
)
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor="rgba(255,255,255,0.1)")
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor="rgba(255,255,255,0.1)")
return fig.to_html(include_plotlyjs="cdn", div_id=f"chart_{symbol}")
except Exception as e:
return f"<div style='padding: 20px; text-align: center; color: #FF6B6B;'>Chart generation failed: {str(e)}</div>"
def create_market_overview(data: Dict[str, Any]) -> str:
try:
if not data or "market_data" not in data:
return "<div style='padding: 20px; text-align: center;'>Market data unavailable</div>"
market_data = data["market_data"]
if not market_data:
return "<div style='padding: 20px; text-align: center;'>No market data found</div>"
df = pd.DataFrame(market_data)
df = df.head(20)
fig = make_subplots(
rows=2, cols=2,
subplot_titles=[
"Market Cap Distribution",
"24h Price Changes",
"Trading Volume",
"Price vs Volume"
],
specs=[[{"type": "pie"}, {"type": "bar"}],
[{"type": "bar"}, {"type": "scatter"}]]
)
fig.add_trace(
go.Pie(
labels=df["symbol"].str.upper(),
values=df["market_cap"],
textinfo="label+percent",
textposition="inside",
marker=dict(colors=px.colors.qualitative.Set3),
hovertemplate="<b>%{label}</b><br>Market Cap: $%{value:,.0f}<extra></extra>"
),
row=1, col=1
)
colors = ["#00D4AA" if x >= 0 else "#FF6B6B" for x in df["price_change_percentage_24h"]]
fig.add_trace(
go.Bar(
x=df["symbol"].str.upper(),
y=df["price_change_percentage_24h"],
marker_color=colors,
hovertemplate="<b>%{x}</b><br>24h Change: %{y:+.2f}%<extra></extra>"
),
row=1, col=2
)
fig.add_trace(
go.Bar(
x=df["symbol"].str.upper(),
y=df["total_volume"],
marker_color="#4ECDC4",
hovertemplate="<b>%{x}</b><br>Volume: $%{y:,.0f}<extra></extra>"
),
row=2, col=1
)
fig.add_trace(
go.Scatter(
x=df["current_price"],
y=df["total_volume"],
mode="markers+text",
text=df["symbol"].str.upper(),
textposition="top center",
marker=dict(
size=df["market_cap"] / df["market_cap"].max() * 50 + 10,
color=df["price_change_percentage_24h"],
colorscale="RdYlGn",
colorbar=dict(title="24h Change %"),
line=dict(width=1, color="white")
),
hovertemplate="<b>%{text}</b><br>Price: $%{x:,.4f}<br>Volume: $%{y:,.0f}<extra></extra>"
),
row=2, col=2
)
global_info = data.get("global_data", {}).get("data", {})
total_mcap = global_info.get("total_market_cap", {}).get("usd", 0)
total_volume = global_info.get("total_volume", {}).get("usd", 0)
btc_dominance = global_info.get("market_cap_percentage", {}).get("btc", 0)
title_text = f"Crypto Market Overview - Total MCap: ${total_mcap/1e12:.2f}T | 24h Vol: ${total_volume/1e9:.0f}B | BTC Dom: {btc_dominance:.1f}%"
fig.update_layout(
title=dict(
text=title_text,
x=0.5,
font=dict(size=16, color="#FFFFFF")
),
template="plotly_dark",
showlegend=False,
height=800,
margin=dict(l=60, r=60, t=100, b=60),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)"
)
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor="rgba(255,255,255,0.1)")
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor="rgba(255,255,255,0.1)")
return fig.to_html(include_plotlyjs="cdn", div_id="market_overview")
except Exception as e:
return f"<div style='padding: 20px; text-align: center; color: #FF6B6B;'>Market overview failed: {str(e)}</div>"
def create_comparison_chart(coins_data: List[Dict[str, Any]]) -> str:
try:
if not coins_data:
return "<div style='padding: 20px; text-align: center;'>No comparison data available</div>"
df = pd.DataFrame(coins_data)
fig = make_subplots(
rows=1, cols=2,
subplot_titles=["Price Comparison", "Market Cap Comparison"]
)
colors = px.colors.qualitative.Set1[:len(df)]
for i, (_, coin) in enumerate(df.iterrows()):
fig.add_trace(
go.Bar(
name=coin["symbol"].upper(),
x=[coin["symbol"].upper()],
y=[coin["current_price"]],
marker_color=colors[i],
hovertemplate=f"<b>{coin['name']}</b><br>Price: $%{{y:,.4f}}<extra></extra>"
),
row=1, col=1
)
fig.add_trace(
go.Bar(
name=coin["symbol"].upper(),
x=[coin["symbol"].upper()],
y=[coin["market_cap"]],
marker_color=colors[i],
showlegend=False,
hovertemplate=f"<b>{coin['name']}</b><br>Market Cap: $%{{y:,.0f}}<extra></extra>"
),
row=1, col=2
)
fig.update_layout(
title="Cryptocurrency Comparison",
template="plotly_dark",
height=500,
showlegend=True
)
return fig.to_html(include_plotlyjs="cdn", div_id="comparison_chart")
except Exception as e:
return f"<div style='padding: 20px; text-align: center; color: #FF6B6B;'>Comparison chart failed: {str(e)}</div>"
|