File size: 6,996 Bytes
ea46ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
from typing import Dict, List, Any, Optional
import logging

logger = logging.getLogger(__name__)

class CryptoVisualizations:
    """Professional cryptocurrency data visualizations"""
    
    @staticmethod
    def create_price_chart(data: Dict[str, Any], symbol: str = "BTC") -> go.Figure:
        """Create a professional price chart with volume"""
        try:
            if not data or 'prices' not in data:
                return CryptoVisualizations._create_empty_chart("No price data available")
            
            prices = data['prices']
            volumes = data.get('total_volumes', [])
            
            # Convert to DataFrame
            df = pd.DataFrame({
                'timestamp': [pd.to_datetime(p[0], unit='ms') for p in prices],
                'price': [p[1] for p in prices],
                'volume': [v[1] if v else 0 for v in (volumes[:len(prices)] if volumes else [])]
            })
            
            # Create subplot with secondary y-axis
            fig = make_subplots(
                rows=2, cols=1,
                shared_xaxes=True,
                vertical_spacing=0.1,
                subplot_titles=(f'{symbol.upper()} Price', 'Volume'),
                row_heights=[0.7, 0.3]
            )
            
            # Price line
            fig.add_trace(
                go.Scatter(
                    x=df['timestamp'],
                    y=df['price'],
                    mode='lines',
                    name='Price',
                    line=dict(color='#00d4aa', width=2),
                    hovertemplate='<b>%{y:,.2f} USD</b><br>%{x}<extra></extra>'
                ),
                row=1, col=1
            )
            
            # Volume bars
            if not df['volume'].empty and df['volume'].sum() > 0:
                fig.add_trace(
                    go.Bar(
                        x=df['timestamp'],
                        y=df['volume'],
                        name='Volume',
                        marker_color='rgba(0, 212, 170, 0.3)',
                        hovertemplate='<b>%{y:,.0f}</b><br>%{x}<extra></extra>'
                    ),
                    row=2, col=1
                )
            
            # Update layout
            fig.update_layout(
                title=dict(
                    text=f'{symbol.upper()} Price Analysis',
                    font=dict(size=24, color='#2c3e50'),
                    x=0.5
                ),
                showlegend=False,
                height=600,
                margin=dict(l=60, r=30, t=80, b=60),
                plot_bgcolor='white',
                paper_bgcolor='white',
                font=dict(family="SF Pro Display, -apple-system, system-ui, sans-serif", size=12)
            )
            
            # Update axes
            fig.update_xaxes(
                gridcolor='#ecf0f1',
                gridwidth=1,
                showgrid=True,
                tickfont=dict(color='#7f8c8d')
            )
            fig.update_yaxes(
                gridcolor='#ecf0f1',
                gridwidth=1,
                showgrid=True,
                tickfont=dict(color='#7f8c8d')
            )
            
            return fig
            
        except Exception as e:
            logger.error(f"Error creating price chart: {e}")
            return CryptoVisualizations._create_empty_chart(f"Error: {str(e)}")
    
    @staticmethod
    def create_market_overview(data: List[Dict[str, Any]]) -> go.Figure:
        """Create market overview with top cryptocurrencies"""
        try:
            if not data:
                return CryptoVisualizations._create_empty_chart("No market data available")
            
            # Convert to DataFrame
            df = pd.DataFrame(data)
            
            # Take top 10 by market cap
            df = df.head(10).sort_values('market_cap', ascending=True)
            
            # Create horizontal bar chart
            fig = go.Figure()
            
            # Market cap bars
            fig.add_trace(
                go.Bar(
                    y=df['name'],
                    x=df['market_cap'],
                    orientation='h',
                    marker=dict(
                        color=df['price_change_percentage_24h'],
                        colorscale='RdYlGn',
                        colorbar=dict(title="24h Change %"),
                        line=dict(color='white', width=1)
                    ),
                    hovertemplate='<b>%{y}</b><br>Market Cap: $%{x:,.0f}<br>24h: %{marker.color:.2f}%<extra></extra>'
                )
            )
            
            fig.update_layout(
                title=dict(
                    text='Top 10 Cryptocurrencies by Market Cap',
                    font=dict(size=24, color='#2c3e50'),
                    x=0.5
                ),
                xaxis_title='Market Cap (USD)',
                height=500,
                margin=dict(l=120, r=30, t=80, b=60),
                plot_bgcolor='white',
                paper_bgcolor='white',
                font=dict(family="SF Pro Display, -apple-system, system-ui, sans-serif", size=12)
            )
            
            fig.update_xaxes(
                gridcolor='#ecf0f1',
                gridwidth=1,
                showgrid=True,
                tickfont=dict(color='#7f8c8d')
            )
            fig.update_yaxes(
                tickfont=dict(color='#2c3e50', size=11)
            )
            
            return fig
            
        except Exception as e:
            logger.error(f"Error creating market overview: {e}")
            return CryptoVisualizations._create_empty_chart(f"Error: {str(e)}")
    
    @staticmethod
    def _create_empty_chart(message: str) -> go.Figure:
        """Create an empty chart with error message"""
        fig = go.Figure()
        
        fig.add_annotation(
            text=message,
            xref="paper", yref="paper",
            x=0.5, y=0.5,
            showarrow=False,
            font=dict(size=16, color="#7f8c8d")
        )
        
        fig.update_layout(
            height=400,
            margin=dict(l=60, r=60, t=60, b=60),
            plot_bgcolor='white',
            paper_bgcolor='white',
            xaxis=dict(showgrid=False, showticklabels=False),
            yaxis=dict(showgrid=False, showticklabels=False)
        )
        
        return fig

# Convenience functions for backward compatibility
def create_price_chart(data: Dict[str, Any], symbol: str = "BTC") -> go.Figure:
    """Create price chart - backward compatibility function"""
    return CryptoVisualizations.create_price_chart(data, symbol)

def create_market_overview(data: List[Dict[str, Any]]) -> go.Figure:
    """Create market overview - backward compatibility function"""
    return CryptoVisualizations.create_market_overview(data)