File size: 33,138 Bytes
f104fee
c02fe07
f104fee
 
 
 
 
 
 
c02fe07
f104fee
4498d8e
65703d9
9b006e9
f104fee
c02fe07
f104fee
 
 
923b4b3
 
 
 
 
 
 
f104fee
 
9b006e9
c02fe07
9b006e9
 
6bf47a1
65703d9
9b006e9
f104fee
6bf47a1
 
 
 
 
 
 
 
 
 
 
65703d9
c02fe07
 
 
 
 
6bf47a1
65703d9
c02fe07
 
 
 
 
f104fee
65703d9
f104fee
c02fe07
6bf47a1
 
 
 
 
 
2fe0e75
6bf47a1
 
 
 
2fe0e75
6bf47a1
 
 
 
 
 
 
c02fe07
 
6bf47a1
 
 
c02fe07
9b006e9
 
 
b091b2c
 
 
 
 
 
 
 
 
9b006e9
 
 
 
 
 
c02fe07
 
 
 
 
 
9b006e9
 
 
 
 
 
 
4498d8e
 
 
 
 
 
9b006e9
c02fe07
6bf47a1
 
c02fe07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b006e9
 
 
 
c02fe07
 
9b006e9
 
 
 
65703d9
 
 
 
f104fee
6bf47a1
 
65703d9
 
6bf47a1
65703d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02fe07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4b05e9
c02fe07
 
 
 
 
 
 
 
 
65703d9
 
c02fe07
 
65703d9
 
 
 
 
d44409c
c02fe07
d44409c
 
 
 
b091b2c
d44409c
 
 
c02fe07
d44409c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02fe07
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe0e75
 
 
 
 
 
0d94513
2fe0e75
 
 
 
 
0d94513
2fe0e75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d94513
2fe0e75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02fe07
 
 
 
 
 
 
 
 
 
 
68d7321
c02fe07
 
 
a4b05e9
 
 
c02fe07
a4b05e9
c02fe07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65703d9
 
 
 
a4b05e9
65703d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02fe07
65703d9
 
 
c02fe07
65703d9
c02fe07
65703d9
 
c02fe07
65703d9
f104fee
c02fe07
f104fee
 
 
c02fe07
 
f104fee
0d94513
c02fe07
f104fee
 
 
 
 
c02fe07
 
 
65703d9
 
6bf47a1
 
65703d9
 
 
 
 
 
 
 
 
 
d44409c
6bf47a1
d44409c
 
 
 
6bf47a1
d44409c
6bf47a1
d44409c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c785b3f
d44409c
c785b3f
d44409c
c785b3f
d44409c
c785b3f
d44409c
 
 
c785b3f
6bf47a1
 
 
 
2fe0e75
 
 
 
 
 
6bf47a1
2fe0e75
 
 
6bf47a1
 
2fe0e75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf47a1
 
 
 
 
 
 
 
 
65703d9
6bf47a1
 
 
a4b05e9
 
 
923b4b3
a4b05e9
 
923b4b3
a4b05e9
6bf47a1
a4b05e9
6bf47a1
 
 
 
 
 
 
 
923b4b3
6bf47a1
 
 
65703d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf47a1
 
 
923b4b3
 
 
 
 
 
6bf47a1
 
 
 
 
 
2fe0e75
6bf47a1
 
 
 
 
 
 
 
 
 
 
c02fe07
 
 
f104fee
c02fe07
 
 
 
 
 
 
 
f104fee
65703d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.llms import Ollama
from langchain.memory import ConversationBufferWindowMemory
from typing import List, Dict, Any
import asyncio
from datetime import datetime

from src.tools.coingecko_tool import CoinGeckoTool
from src.tools.defillama_tool import DeFiLlamaTool
from src.tools.cryptocompare_tool import CryptoCompareTool
from src.tools.etherscan_tool import EtherscanTool
from src.tools.chart_data_tool import ChartDataTool
from src.agent.memory_manager import MemoryManager
from src.utils.config import config
from src.utils.logger import get_logger
from src.utils.ai_safety import ai_safety

logger = get_logger(__name__)

# Add version logging for debugging
try:
    from version import VERSION
    logger.info(f"πŸ”§ Research Agent Version: {VERSION}")
except ImportError:
    logger.info("πŸ”§ Research Agent Version: Unknown")

class Web3ResearchAgent:
    def __init__(self):
        self.llm = None
        self.fallback_llm = None
        self.tools = []
        self.enabled = False
        self.gemini_available = False
        self.memory_manager = MemoryManager(window_size=10)
        
        try:
            # Always initialize Ollama
            logger.info("πŸ”§ Initializing Ollama as fallback")
            self._init_ollama()
            
            # Try to initialize Gemini if API key is available
            if config.GEMINI_API_KEY:
                logger.info("πŸ”§ Initializing Gemini as primary option")
                self._init_gemini()
                
            self.tools = self._initialize_tools()
            self.enabled = True
            logger.info("🧠 Memory Manager initialized with conversation tracking")
                
        except Exception as e:
            logger.error(f"Agent initialization failed: {e}")
            self.enabled = False

    def _init_ollama(self):
        """Initialize Ollama LLM with optimized settings"""
        try:
            self.fallback_llm = Ollama(
                model=config.OLLAMA_MODEL,
                base_url=config.OLLAMA_BASE_URL,
                temperature=0.1
            )
            logger.info(f"βœ… Ollama initialized - Model: {config.OLLAMA_MODEL} (timeout optimized)")
        except Exception as e:
            logger.error(f"Ollama initialization failed: {e}")
            raise
    
    def _init_gemini(self):
        """Initialize Gemini LLM"""
        try:
            self.llm = ChatGoogleGenerativeAI(
                model="gemini-2.0-flash-lite",  # Updated to Gemini 2.0 Flash-Lite
                google_api_key=config.GEMINI_API_KEY,
                temperature=0.1
            )
            self.gemini_available = True
            logger.info("βœ… Gemini initialized with gemini-2.0-flash-lite")
        except Exception as e:
            logger.warning(f"Gemini initialization failed: {e}")
            self.gemini_available = False

    def _init_ollama_only(self):
        """Initialize with only Ollama LLM (deprecated - kept for compatibility)"""
        self._init_ollama()

    def _init_with_gemini_fallback(self):
        """Initialize with Gemini primary and Ollama fallback (deprecated - kept for compatibility)"""
        self._init_ollama()
        self._init_gemini()

    def _initialize_tools(self):
        tools = []
        
        # Skip CoinGecko if no API key available
        if config.COINGECKO_API_KEY:
            try:
                tools.append(CoinGeckoTool())
                logger.info("CoinGecko tool initialized")
            except Exception as e:
                logger.warning(f"CoinGecko tool failed: {e}")
        else:
            logger.info("CoinGecko tool skipped - no API key available")
        
        try:
            tools.append(DeFiLlamaTool())
            logger.info("DeFiLlama tool initialized")
        except Exception as e:
            logger.warning(f"DeFiLlama tool failed: {e}")

        try:
            tools.append(CryptoCompareTool())
            logger.info("CryptoCompare tool initialized")
        except Exception as e:
            logger.warning(f"CryptoCompare tool failed: {e}")
        
        try:
            tools.append(EtherscanTool())
            logger.info("Etherscan tool initialized")
        except Exception as e:
            logger.warning(f"Etherscan tool failed: {e}")
        
        try:
            tools.append(ChartDataTool())
            logger.info("ChartDataTool initialized")
        except Exception as e:
            logger.warning(f"ChartDataTool failed: {e}")
        
        return tools

    async def research_query(self, query: str, use_gemini: bool = False) -> Dict[str, Any]:
        """Research query with dynamic LLM selection - Enhanced with AI Safety"""
        
        # AI Safety Check 1: Sanitize and validate input
        sanitized_query, is_safe, safety_reason = ai_safety.sanitize_query(query)
        if not is_safe:
            ai_safety.log_safety_event("blocked_query", {
                "original_query": query[:100],
                "reason": safety_reason,
                "timestamp": datetime.now().isoformat()
            })
            return {
                "success": False,
                "query": query,
                "error": f"Safety filter: {safety_reason}",
                "result": "Your query was blocked by our safety filters. Please ensure your request is focused on legitimate cryptocurrency research and analysis.",
                "sources": [],
                "metadata": {"timestamp": datetime.now().isoformat(), "safety_blocked": True}
            }
        
        # AI Safety Check 2: Rate limiting
        rate_ok, rate_message = ai_safety.check_rate_limit()
        if not rate_ok:
            ai_safety.log_safety_event("rate_limit", {
                "message": rate_message,
                "timestamp": datetime.now().isoformat()
            })
            return {
                "success": False,
                "query": query,
                "error": "Rate limit exceeded",
                "result": f"Please wait before making another request. {rate_message}",
                "sources": [],
                "metadata": {"timestamp": datetime.now().isoformat(), "rate_limited": True}
            }
        
        if not self.enabled:
            return {
                "success": False,
                "query": query,
                "error": "Research agent not initialized",
                "result": "Research service not available. Please check configuration.",
                "sources": [],
                "metadata": {"timestamp": datetime.now().isoformat()}
            }
        
        # Get conversation context from memory
        memory_context = self.memory_manager.get_relevant_context(sanitized_query)
        logger.info(f"🧠 Retrieved memory context: {len(memory_context.get('cached_context', []))} relevant items")
        
        try:
            # Choose LLM based on user preference and availability
            if use_gemini and self.gemini_available:
                logger.info("πŸ€– Processing with Gemini + Tools (Safety Enhanced + Memory)")
                result = await self._research_with_gemini_tools(sanitized_query, memory_context)
            else:
                logger.info("πŸ€– Processing with Ollama + Tools (Safety Enhanced + Memory)")
                result = await self._research_with_ollama_tools(sanitized_query, memory_context)
                
            # Save successful interaction to memory
            if result.get("success"):
                metadata = {
                    "llm_used": result.get("metadata", {}).get("llm_used", "unknown"),
                    "tools_used": result.get("metadata", {}).get("tools_used", []),
                    "timestamp": datetime.now().isoformat(),
                    "sources": result.get("sources", [])
                }
                self.memory_manager.add_interaction(query, result["result"], metadata)
                logger.info("🧠 Interaction saved to memory")
                
            return result
                
        except Exception as e:
            logger.error(f"Research failed: {e}")
            # Fallback to simple Ollama response with safety
            try:
                safe_prompt = ai_safety.create_safe_prompt(sanitized_query, "Limited context available")
                simple_response = await self.fallback_llm.ainvoke(safe_prompt)
                
                # Validate response safety
                clean_response, response_safe, response_reason = ai_safety.validate_ollama_response(simple_response)
                if not response_safe:
                    ai_safety.log_safety_event("blocked_response", {
                        "reason": response_reason,
                        "timestamp": datetime.now().isoformat()
                    })
                    return {
                        "success": False,
                        "query": query,
                        "error": "Response safety filter",
                        "result": "The AI response was blocked by safety filters. Please try a different query.",
                        "sources": [],
                        "metadata": {"timestamp": datetime.now().isoformat(), "response_blocked": True}
                    }
                
                return {
                    "success": True,
                    "query": query,
                    "result": clean_response,
                    "sources": [],
                    "metadata": {"llm": "ollama", "mode": "simple", "timestamp": datetime.now().isoformat()}
                }
            except Exception as fallback_error:
                logger.error(f"Fallback response failed: {fallback_error}")
                return {
                    "success": False,
                    "query": query,
                    "error": str(fallback_error),
                    "result": f"Research failed: {str(fallback_error)}",
                    "sources": [],
                    "metadata": {"timestamp": datetime.now().isoformat()}
                }

    async def _research_with_ollama_tools(self, query: str, memory_context: Dict[str, Any] = None) -> Dict[str, Any]:
        """Research using Ollama with manual tool calling - Enhanced with memory"""
        try:
            # Step 1: Analyze query to determine which tools to use
            # Include memory context in analysis if available
            context_note = ""
            if memory_context and memory_context.get("cached_context"):
                context_note = f"\n\nPrevious context: {len(memory_context['cached_context'])} related queries found"
            
            tool_analysis_prompt = f"""Tools for: "{query}"{context_note}

cryptocompare_data: crypto prices
etherscan_data: Ethereum data  
defillama_data: DeFi TVL
chart_data_provider: charts

Bitcoin price β†’ cryptocompare_data
DeFi TVL β†’ defillama_data
Ethereum β†’ etherscan_data

Answer with tool names:"""
            try:
                tool_response = await asyncio.wait_for(
                    self.fallback_llm.ainvoke(tool_analysis_prompt),
                    timeout=30  # 30 second timeout for tool analysis
                )
                logger.info(f"🧠 Ollama tool analysis response: {str(tool_response)[:500]}...")
                
                # Clean up the response and extract tool names
                response_text = str(tool_response).lower()
                suggested_tools = []
                
                # Check for each tool in the response
                tool_mappings = {
                    'cryptocompare': 'cryptocompare_data',
                    'defillama': 'defillama_data', 
                    'etherscan': 'etherscan_data',
                    'chart': 'chart_data_provider'
                }
                
                for keyword, tool_name in tool_mappings.items():
                    if keyword in response_text:
                        suggested_tools.append(tool_name)
                
            except asyncio.TimeoutError:
                logger.warning("⏱️ Tool analysis timed out, using fallback tool selection")
                # Fallback tool selection based on query keywords
                suggested_tools = []
                query_lower = query.lower()
                
                if any(word in query_lower for word in ['price', 'bitcoin', 'btc', 'ethereum', 'eth', 'crypto']):
                    suggested_tools.append('cryptocompare_data')
                if 'defi' in query_lower or 'tvl' in query_lower:
                    suggested_tools.append('defillama_data')
                if 'ethereum' in query_lower or 'gas' in query_lower:
                    suggested_tools.append('etherscan_data')
                if any(word in query_lower for word in ['chart', 'graph', 'visualization', 'trend']):
                    suggested_tools.append('chart_data_provider')
                
                # Default to basic crypto data if no matches
                if not suggested_tools:
                    suggested_tools = ['cryptocompare_data']
            
            # Default to at least one relevant tool if parsing fails
            if not suggested_tools:
                if any(word in query.lower() for word in ['price', 'bitcoin', 'ethereum', 'crypto']):
                    suggested_tools = ['cryptocompare_data']
                elif 'defi' in query.lower() or 'tvl' in query.lower():
                    suggested_tools = ['defillama_data']
                else:
                    suggested_tools = ['cryptocompare_data']
            
            logger.info(f"πŸ› οΈ Ollama suggested tools: {suggested_tools}")
            
            # Step 2: Execute relevant tools
            tool_results = []
            try:
                for tool_name in suggested_tools:
                    tool = next((t for t in self.tools if t.name == tool_name), None)
                    if tool:
                        try:
                            logger.info(f"πŸ”§ Executing {tool_name}")
                            
                            # Handle chart_data_provider with proper parameters
                            if tool_name == "chart_data_provider":
                                # Extract chart type from query or default to price_chart
                                chart_type = "price_chart"  # Default
                                symbol = "bitcoin"  # Default
                                
                                if "defi" in query.lower() or "tvl" in query.lower():
                                    chart_type = "defi_tvl"
                                elif "market" in query.lower() or "overview" in query.lower():
                                    chart_type = "market_overview"
                                elif "gas" in query.lower():
                                    chart_type = "gas_tracker"
                                    
                                # Extract symbol if mentioned
                                if "ethereum" in query.lower() or "eth" in query.lower():
                                    symbol = "ethereum"
                                elif "bitcoin" in query.lower() or "btc" in query.lower():
                                    symbol = "bitcoin"
                                    
                                result = await tool._arun(chart_type=chart_type, symbol=symbol)
                            else:
                                # Other tools use the query directly
                                result = await tool._arun(query)
                                
                            logger.info(f"πŸ“Š {tool_name} result preview: {str(result)[:200]}...")
                            tool_results.append(f"=== {tool_name} Results ===\n{result}\n")
                        except Exception as e:
                            logger.error(f"Tool {tool_name} failed: {e}")
                            tool_results.append(f"=== {tool_name} Error ===\nTool failed: {str(e)}\n")
                        finally:
                            # Cleanup tool session if available
                            if hasattr(tool, 'cleanup'):
                                try:
                                    await tool.cleanup()
                                except Exception:
                                    pass  # Ignore cleanup errors
            finally:
                # Ensure all tools are cleaned up
                for tool in self.tools:
                    if hasattr(tool, 'cleanup'):
                        try:
                            await tool.cleanup()
                        except Exception:
                            pass
            
            # Step 3: Generate final response with tool results using AI Safety
            context = "\n".join(tool_results) if tool_results else "No tool data available - provide general information."
            
            # Use AI Safety to create a safe prompt
            final_prompt = ai_safety.create_safe_prompt(query, context)
            
            # Add timeout for final response to prevent web request timeout
            try:
                final_response = await asyncio.wait_for(
                    self.fallback_llm.ainvoke(final_prompt),
                    timeout=440  # 90 second timeout for Llama 3.1 8B model
                )
                logger.info(f"🎯 Ollama final response preview: {str(final_response)[:300]}...")
                
                # Extract content from Ollama response
                response_content = str(final_response)
                
                # AI Safety Check: Validate response
                clean_response, response_safe, response_reason = ai_safety.validate_ollama_response(response_content)
                if not response_safe:
                    ai_safety.log_safety_event("blocked_ollama_response", {
                        "reason": response_reason,
                        "query": query[:100],
                        "timestamp": datetime.now().isoformat()
                    })
                    # Use tool data directly instead of unsafe response
                    clean_response = f"""## Cryptocurrency Analysis

Based on the available data:

{context[:1000]}

*Response generated from verified tool data for safety compliance.*"""
                
                final_response = clean_response
                
            except asyncio.TimeoutError:
                logger.warning("⏱️ Ollama final response timed out (60s), using enhanced tool summary")
                # Create a better summary from the tool results
                summary_parts = []
                
                if "cryptocompare_data" in suggested_tools:
                    summary_parts.append("πŸ“Š **Price Data**: Live cryptocurrency prices retrieved")
                if "defillama_data" in suggested_tools:
                    summary_parts.append("πŸ”’ **DeFi Data**: Protocol TVL and yield information available")
                if "etherscan_data" in suggested_tools:
                    summary_parts.append("⛓️ **Blockchain Data**: Ethereum network information gathered")
                if "chart_data_provider" in suggested_tools:
                    summary_parts.append("πŸ“ˆ **Chart Data**: Visualization data prepared")
                
                # Extract key data points from tool results
                key_data = ""
                if tool_results:
                    for result in tool_results[:2]:  # Use first 2 tool results
                        if "USD" in result:
                            # Extract price info
                            lines = result.split('\n')
                            for line in lines:
                                if "USD" in line and "$" in line:
                                    key_data += f"\n{line.strip()}"
                                    break
                
                final_response = f"""## {query.title()}

{chr(10).join(summary_parts)}

**Key Findings**:{key_data}

The system successfully executed {len(suggested_tools)} data tools:
β€’ {', '.join(suggested_tools)}

*Complete analysis available - AI processing optimized for speed.*"""
            
            logger.info("βœ… Research successful with Ollama + tools")
            return {
                "success": True,
                "query": query,
                "result": final_response,
                "sources": [],
                "metadata": {
                    "llm_used": f"Ollama ({config.OLLAMA_MODEL})", 
                    "tools_used": suggested_tools,
                    "timestamp": datetime.now().isoformat()
                }
            }
            
        except Exception as e:
            logger.error(f"Ollama tools research failed: {e}")
            raise e

    async def _research_with_gemini_tools(self, query: str, memory_context: Dict[str, Any] = None) -> Dict[str, Any]:
        """Research using Gemini with tools - Enhanced with memory"""
        try:
            # Step 1: Analyze query and suggest tools using Gemini
            # Include memory context if available
            context_info = ""
            if memory_context and memory_context.get("cached_context"):
                recent_tools = []
                for ctx in memory_context["cached_context"][:2]:  # Last 2 contexts
                    if "tools_used" in ctx:
                        recent_tools.extend(ctx["tools_used"])
                if recent_tools:
                    context_info = f"\n\nRecent tools used: {', '.join(set(recent_tools))}"
            
            tool_analysis_prompt = f"""Tools for: "{query}"{context_info}

cryptocompare_data: crypto prices
etherscan_data: Ethereum data
defillama_data: DeFi TVL  
chart_data_provider: charts

List tool names:"""

            try:
                tool_response = await asyncio.wait_for(
                    self.llm.ainvoke(tool_analysis_prompt),
                    timeout=30  # 30 second timeout for Gemini tool analysis
                )
                
                logger.info(f"🧠 Gemini tool analysis response: {str(tool_response)[:100]}...")
                
                # Parse suggested tools
                suggested_tools = [tool.strip() for tool in str(tool_response).split(',') if tool.strip()]
                suggested_tools = [tool for tool in suggested_tools if tool in {
                    'cryptocompare_data', 'defillama_data', 
                    'etherscan_data', 'chart_data_provider'
                }]
                
                # If no valid tools found, extract from response content
                if not suggested_tools:
                    response_text = str(tool_response).lower()
                    if 'cryptocompare' in response_text:
                        suggested_tools.append('cryptocompare_data')
                    if 'defillama' in response_text:
                        suggested_tools.append('defillama_data')
                    if 'etherscan' in response_text:
                        suggested_tools.append('etherscan_data')
                    if 'chart' in response_text or 'visualization' in response_text:
                        suggested_tools.append('chart_data_provider')
                        
            except asyncio.TimeoutError:
                logger.warning("⏱️ Gemini tool analysis timed out, using fallback tool selection")
                # Same fallback logic as Ollama
                suggested_tools = []
                query_lower = query.lower()
                
                if any(word in query_lower for word in ['price', 'bitcoin', 'btc', 'ethereum', 'eth', 'crypto']):
                    suggested_tools.append('cryptocompare_data')
                if 'defi' in query_lower or 'tvl' in query_lower:
                    suggested_tools.append('defillama_data')
                if 'ethereum' in query_lower or 'gas' in query_lower:
                    suggested_tools.append('etherscan_data')
                if any(word in query_lower for word in ['chart', 'graph', 'visualization', 'trend']):
                    suggested_tools.append('chart_data_provider')
                
                if not suggested_tools:
                    suggested_tools = ['cryptocompare_data']
            
            logger.info(f"πŸ› οΈ Gemini suggested tools: {suggested_tools}")

            # Step 2: Execute tools (same logic as Ollama version)
            tool_results = []
            try:
                for tool_name in suggested_tools:
                    tool = next((t for t in self.tools if t.name == tool_name), None)
                    if tool:
                        try:
                            logger.info(f"πŸ”§ Executing {tool_name}")
                            
                            # Handle chart_data_provider with proper parameters
                            if tool_name == "chart_data_provider":
                                chart_type = "price_chart"
                                symbol = "bitcoin"
                                
                                if "defi" in query.lower() or "tvl" in query.lower():
                                    chart_type = "defi_tvl"
                                elif "market" in query.lower() or "overview" in query.lower():
                                    chart_type = "market_overview"
                                elif "gas" in query.lower():
                                    chart_type = "gas_tracker"
                                    
                                if "ethereum" in query.lower() or "eth" in query.lower():
                                    symbol = "ethereum"
                                elif "bitcoin" in query.lower() or "btc" in query.lower():
                                    symbol = "bitcoin"
                                    
                                result = await tool._arun(chart_type=chart_type, symbol=symbol)
                            else:
                                result = await tool._arun(query)
                                
                            logger.info(f"πŸ“Š {tool_name} result preview: {str(result)[:200]}...")
                            tool_results.append(f"=== {tool_name} Results ===\n{result}\n")
                        except Exception as e:
                            logger.error(f"Tool {tool_name} failed: {e}")
                            tool_results.append(f"=== {tool_name} Error ===\nTool failed: {str(e)}\n")
                        finally:
                            # Cleanup tool session if available
                            if hasattr(tool, 'cleanup'):
                                try:
                                    await tool.cleanup()
                                except Exception:
                                    pass  # Ignore cleanup errors
            finally:
                # Ensure all tools are cleaned up
                for tool in self.tools:
                    if hasattr(tool, 'cleanup'):
                        try:
                            await tool.cleanup()
                        except Exception:
                            pass
            
            # Step 3: Generate final response with Gemini
            context = "\n".join(tool_results) if tool_results else "No tool data available - provide general information."
            
            final_prompt = ai_safety.create_safe_prompt(query, context)
            
            try:
                final_response = await asyncio.wait_for(
                    self.llm.ainvoke(final_prompt),
                    timeout=60  # 60 second timeout for complex analysis
                )
                logger.info(f"🎯 Gemini final response preview: {str(final_response)[:300]}...")
                
                # Extract content from Gemini response object
                if hasattr(final_response, 'content'):
                    response_content = final_response.content
                    logger.info(f"βœ… Extracted clean content: {response_content[:200]}...")
                else:
                    response_content = str(final_response)
                    logger.warning(f"⚠️ Fallback to str() conversion: {response_content[:200]}...")
                
                # AI Safety Check: Validate response
                clean_response, response_safe, response_reason = ai_safety.validate_gemini_response(response_content)
                if not response_safe:
                    ai_safety.log_safety_event("blocked_gemini_response", {
                        "reason": response_reason,
                        "query": query[:100],
                        "timestamp": datetime.now().isoformat()
                    })
                    clean_response = f"## Cryptocurrency Analysis\n\nBased on the available data:\n\n{context[:1000]}\n\n*Response filtered for safety*"
                
                logger.info(f"πŸ”’ Final clean response: {clean_response[:200]}...")
                final_response = clean_response
                
            except asyncio.TimeoutError:
                logger.warning("⏱️ Gemini final response timed out (60s), using enhanced tool summary")
                
                # Create enhanced summary from tools
                summary_parts = []
                if "cryptocompare_data" in suggested_tools:
                    summary_parts.append("πŸ“Š **Market Data**: Real-time cryptocurrency prices")
                if "defillama_data" in suggested_tools:
                    summary_parts.append("πŸ›οΈ **DeFi Analytics**: Protocol TVL and performance metrics")
                if "etherscan_data" in suggested_tools:
                    summary_parts.append("⛓️ **On-Chain Data**: Ethereum blockchain insights")
                if "chart_data_provider" in suggested_tools:
                    summary_parts.append("πŸ“ˆ **Visualizations**: Chart data prepared")
                
                final_response = f"""## Web3 Research Analysis

{chr(10).join(summary_parts)}

**Data Sources Processed**: {len(suggested_tools)} tools executed successfully

{context[:800] if context else 'Tool data processing completed'}

*Analysis optimized for real-time delivery*"""
            
            logger.info("βœ… Research successful with Gemini + tools")
            
            # Final safety check: ensure we're not returning raw LangChain objects
            if isinstance(final_response, str):
                if "additional_kwargs" in final_response or "response_metadata" in final_response:
                    logger.error("🚨 CRITICAL: Raw LangChain metadata detected in final response!")
                    final_response = "Response contains technical metadata and has been filtered for safety."
            
            return {
                "success": True,
                "query": query,
                "result": final_response,
                "sources": [],
                "metadata": {
                    "llm_used": f"Gemini ({self.llm.model_name if hasattr(self.llm, 'model_name') else 'gemini-1.5-flash'})", 
                    "tools_used": suggested_tools,
                    "timestamp": datetime.now().isoformat()
                }
            }
            
        except Exception as e:
            logger.error(f"Gemini tools research failed: {e}")
            # Fallback to Ollama if Gemini fails
            logger.info("πŸ”„ Falling back to Ollama due to Gemini error")
            return await self._research_with_ollama_tools(query)

    def _extract_sources(self, response: str) -> List[str]:
        """Extract sources from response"""
        # Simple source extraction - can be enhanced
        sources = []
        if "CoinGecko" in response or "coingecko" in response.lower():
            sources.append("CoinGecko")
        if "DeFiLlama" in response or "defillama" in response.lower():
            sources.append("DeFiLlama") 
        if "Etherscan" in response or "etherscan" in response.lower():
            sources.append("Etherscan")
        if "CryptoCompare" in response or "cryptocompare" in response.lower():
            sources.append("CryptoCompare")
        return sources

    def get_conversation_history(self) -> Dict[str, Any]:
        """Get conversation history from memory"""
        return self.memory_manager.get_relevant_context("")
    
    def clear_conversation_memory(self):
        """Clear conversation memory"""
        self.memory_manager.clear_memory()
        logger.info("🧠 Conversation memory cleared")
    
    def get_memory_stats(self) -> Dict[str, Any]:
        """Get memory usage statistics"""
        history = self.memory_manager.memory.load_memory_variables({})
        return {
            "total_interactions": len(history.get("chat_history", [])) // 2,  # Each interaction has input+output
            "cached_contexts": len(self.memory_manager.context_cache),
            "memory_enabled": True
        }