Spaces:
No application file
No application file
File size: 1,766 Bytes
cb44495 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import PyPDF2
import os
from langchain.embeddings import CohereEmbeddings
from langchain.vectorstores.faiss import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms.fireworks import Fireworks
from langchain import VectorDBQA
FIREWORKS_API_KEY = os.getenv("FIREWORKS_API_KEY")
def pdf_to_text(pdf_file, query):
# Open the PDF file in binary mode
with open(pdf_file.name, 'rb') as pdf_file:
# Create a PDF reader object
pdf_reader = PyPDF2.PdfReader(pdf_file)
# Create an empty string to store the text
text = ""
# Loop through each page of the PDF
for page_num in range(len(pdf_reader.pages)):
# Get the page object
page = pdf_reader.pages[page_num]
# Extract the texst from the page and add it to the text variable
text += page.extract_text()
#embedding step
llm = Fireworks(model="accounts/fireworks/models/llama-v2-13b-chat", model_kwargs={"temperature": 0, "max_tokens": 500, "top_p": 1.0})
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(text)
embeddings = CohereEmbeddings(cohere_api_key="Ev0v9wwQPa90xDucdHTyFsllXGVHXouakUMObkNb")
#vector store
vectorstore = FAISS.from_texts(texts, embeddings)
#inference
qa = VectorDBQA.from_chain_type(llm=llm, chain_type="stuff", vectorstore=vectorstore)
return qa.run(query)
# Define the Gradio interface
pdf_input = gr.inputs.File(label="PDF File")
query_input = gr.inputs.Textbox(label="Query")
outputs = gr.outputs.Textbox(label="Chatbot Response")
interface = gr.Interface(fn=pdf_to_text, inputs=[pdf_input, query_input], outputs=outputs)
# Run the interface
interface.launch() |