import gradio as gr import PyPDF2 import os from langchain.embeddings import CohereEmbeddings from langchain.vectorstores.faiss import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.llms.fireworks import Fireworks from langchain.chains import VectorDBQA FIREWORKS_API_KEY = os.getenv("FIREWORKS_API_KEY") def pdf_to_text(pdf_file, query): # Open the PDF file in binary mode with open(pdf_file.name, 'rb') as pdf_file: # Create a PDF reader object pdf_reader = PyPDF2.PdfReader(pdf_file) # Create an empty string to store the text text = "" # Loop through each page of the PDF for page_num in range(len(pdf_reader.pages)): # Get the page object page = pdf_reader.pages[page_num] # Extract the texst from the page and add it to the text variable text += page.extract_text() #embedding step llm = Fireworks(model="accounts/fireworks/models/llama-v2-13b-chat", model_kwargs={"temperature": 0, "max_tokens": 500, "top_p": 1.0}) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(text) embeddings = CohereEmbeddings(cohere_api_key="Ev0v9wwQPa90xDucdHTyFsllXGVHXouakUMObkNb") #vector store vectorstore = FAISS.from_texts(texts, embeddings) #inference qa = VectorDBQA.from_chain_type(llm=llm, chain_type="stuff", vectorstore=vectorstore) return qa.run(query) # Define the Gradio interface pdf_input = gr.inputs.File(label="PDF File") query_input = gr.inputs.Textbox(label="Query") outputs = gr.outputs.Textbox(label="Chatbot Response") interface = gr.Interface(fn=pdf_to_text, inputs=[pdf_input, query_input], outputs=outputs) # Run the interface interface.launch()