File size: 15,769 Bytes
2210ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
from flask import Flask, request, jsonify, render_template, flash, redirect, url_for
from flask_login import LoginManager, UserMixin, login_user, logout_user, login_required, current_user
from werkzeug.security import generate_password_hash, check_password_hash
from transformers import pipeline
import torch
from pydub import AudioSegment
import os
import io
import uuid
from datetime import datetime
import sqlite3
from pathlib import Path
import whisper
from extensions import db, login_manager


instance_path = Path(__file__).parent / 'instance'
instance_path.mkdir(exist_ok=True, mode=0o755)

app = Flask(__name__)
app.secret_key = 'очень_сложный_секретный_ключ_здесь'
db_path = instance_path / 'chats.db'
app.config['SQLALCHEMY_DATABASE_URI'] = f'sqlite:///{db_path}'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

# Инициализация Flask-Login
db.init_app(app)
login_manager.init_app(app)
login_manager.login_view = 'auth_bp.login'

# Инициализация моделей
def init_models():
    try:
        emotion_map = {
            'joy': '😊 Радость',
            'neutral': '😐 Нейтрально',
            'anger': '😠 Злость',
            'sadness': '😢 Грусть',
            'surprise': '😲 Удивление'
        }

        speech_to_text_model = whisper.load_model("base")
        text_classifier = pipeline(
            "text-classification",
            model="cointegrated/rubert-tiny2-cedr-emotion-detection"
        )
        audio_classifier = pipeline(
            "audio-classification",
            model="superb/hubert-large-superb-er"
        )

        return {
            'emotion_map': emotion_map,
            'speech_to_text_model': speech_to_text_model,
            'text_classifier': text_classifier,
            'audio_classifier': audio_classifier
        }
    except Exception as e:
        print(f"Ошибка загрузки моделей: {e}")
        return None

models = init_models()
if not models:
    raise RuntimeError("Не удалось загрузить модели")

# Импорт Blueprint
from auth import auth_bp
from profile import profile_bp

app.register_blueprint(auth_bp)
app.register_blueprint(profile_bp)

# Делаем переменные доступными
emotion_map = models['emotion_map']
speech_to_text_model = models['speech_to_text_model']
text_classifier = models['text_classifier']
audio_classifier = models['audio_classifier']


def transcribe_audio(audio_path):
    """Преобразование аудио в текст с помощью Whisper"""
    if not speech_to_text_model:
        return None
    try:
        result = speech_to_text_model.transcribe(audio_path, language="ru")
        return result["text"]
    except Exception as e:
        print(f"Ошибка преобразования аудио в текст: {e}")
        return None


# Инициализация Flask-Login
login_manager = LoginManager(app)
login_manager.login_view = 'login'


# Модель пользователя для Flask-Login
class User(UserMixin):
    def __init__(self, id, username, email, password_hash):
        self.id = id
        self.username = username
        self.email = email
        self.password_hash = password_hash

    def check_password(self, password):
        return check_password_hash(self.password_hash, password)


@login_manager.user_loader
def load_user(user_id):
    conn = get_db_connection()
    user = conn.execute(
        "SELECT id, username, email, password_hash FROM users WHERE id = ?",
        (user_id,)
    ).fetchone()
    conn.close()
    if user:
        return User(id=user['id'], username=user['username'], email=user['email'], password_hash=user['password_hash'])
    return None


# Инициализация БД
def get_db_connection():
    instance_path = Path('instance')
    instance_path.mkdir(exist_ok=True)
    db_path = instance_path / 'chats.db'
    conn = sqlite3.connect(str(db_path))
    conn.row_factory = sqlite3.Row
    return conn


def init_db():
    conn = get_db_connection()
    try:
        conn.execute('''
            CREATE TABLE IF NOT EXISTS users (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                username TEXT UNIQUE NOT NULL,
                email TEXT UNIQUE NOT NULL,
                password_hash TEXT NOT NULL,
                created_at TEXT DEFAULT CURRENT_TIMESTAMP
            )
        ''')
        conn.execute('''
            CREATE TABLE IF NOT EXISTS chats (
                chat_id TEXT PRIMARY KEY,
                user_id INTEGER,
                created_at TEXT,
                title TEXT,
                FOREIGN KEY(user_id) REFERENCES users(id)
            )
        ''')
        conn.execute('''
            CREATE TABLE IF NOT EXISTS messages (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                chat_id TEXT,
                sender TEXT,
                content TEXT,
                timestamp TEXT,
                FOREIGN KEY(chat_id) REFERENCES chats(chat_id)
            )
        ''')
        conn.execute('''
            CREATE TABLE IF NOT EXISTS analysis_reports (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                user_id INTEGER,
                content TEXT,
                emotion TEXT,
                confidence REAL,
                created_at TEXT DEFAULT CURRENT_TIMESTAMP,
                FOREIGN KEY(user_id) REFERENCES users(id)
            )
        ''')
        conn.commit()
    finally:
        conn.close()


init_db()


# Маршруты аутентификации
@app.route('/login', methods=['GET', 'POST'])
def login():
    if request.method == 'POST':
        email = request.form.get('email')
        password = request.form.get('password')

        conn = get_db_connection()
        user = conn.execute(
            "SELECT id, username, email, password_hash FROM users WHERE email = ?",
            (email,)
        ).fetchone()
        conn.close()

        if user and check_password_hash(user['password_hash'], password):
            user_obj = User(id=user['id'], username=user['username'],
                            email=user['email'], password_hash=user['password_hash'])
            login_user(user_obj)
            return redirect(url_for('index'))

        flash('Неверный email или пароль', 'danger')

    return render_template('auth/login.html')


@app.route('/register', methods=['GET', 'POST'])
def register():
    if request.method == 'POST':
        username = request.form.get('username')
        email = request.form.get('email')
        password = request.form.get('password')
        confirm_password = request.form.get('confirm_password')

        if password != confirm_password:
            flash('Пароли не совпадают', 'danger')
            return redirect(url_for('register'))

        conn = get_db_connection()
        try:
            password_hash = generate_password_hash(password)
            conn.execute(
                "INSERT INTO users (username, email, password_hash) VALUES (?, ?, ?)",
                (username, email, password_hash)
            )
            conn.commit()
            flash('Регистрация прошла успешно! Теперь вы можете войти.', 'success')
            return redirect(url_for('login'))
        except sqlite3.IntegrityError:
            flash('Пользователь с таким email или именем уже существует', 'danger')
        finally:
            conn.close()

    return render_template('auth/register.html')


@app.route('/logout')
@login_required
def logout():
    logout_user()
    return redirect(url_for('login'))


# Основные маршруты
@app.route("/")
@login_required
def index():
    conn = get_db_connection()
    try:
        chats = conn.execute(
            "SELECT chat_id, title FROM chats WHERE user_id = ? ORDER BY created_at DESC",
            (current_user.id,)
        ).fetchall()
        return render_template("index.html", chats=chats)
    finally:
        conn.close()


@app.route("/analyze", methods=["POST"])
@login_required
def analyze_text():
    if not text_classifier:
        return jsonify({"error": "Model not loaded"}), 500

    try:
        data = request.get_json()
        text = data.get("text", "").strip()

        if not text:
            return jsonify({"error": "Empty text"}), 400

        # Получаем предсказания модели
        result = text_classifier(text)

        # Проверяем структуру ответа
        if not result or not isinstance(result, list):
            return jsonify({"error": "Invalid model response"}), 500

        # Берем первый результат (самый вероятный)
        prediction = result[0] if result else {}

        # Проверяем наличие нужных полей
        if not all(key in prediction for key in ['label', 'score']):
            return jsonify({"error": "Invalid prediction format"}), 500

        # Сохраняем в базу данных
        conn = get_db_connection()
        conn.execute(
            "INSERT INTO analysis_reports (user_id, content, emotion, confidence) VALUES (?, ?, ?, ?)",
            (current_user.id, text, prediction['label'], prediction['score'])
        )
        conn.commit()
        conn.close()

        return jsonify({
            "emotion": emotion_map.get(prediction['label'], "❓ Неизвестно"),
            "confidence": float(prediction['score'])
        })

    except Exception as e:
        return jsonify({"error": str(e)}), 500


@app.route('/analyze_audio', methods=['POST'])
@login_required
def analyze_audio():
    if not audio_classifier or not speech_to_text_model:
        return jsonify({"error": "Model not loaded"}), 500

    if 'audio' not in request.files:
        return jsonify({'error': 'No audio file'}), 400

    try:
        audio_file = request.files['audio']
        temp_path = "temp_audio.wav"

        audio = AudioSegment.from_file(io.BytesIO(audio_file.read()))
        audio = audio.set_frame_rate(16000).set_channels(1)
        audio.export(temp_path, format="wav", codec="pcm_s16le")

        transcribed_text = transcribe_audio(temp_path)
        result = audio_classifier(temp_path)
        os.remove(temp_path)

        emotion_mapping = {
            'hap': 'happy',
            'sad': 'sad',
            'neu': 'neutral',
            'ang': 'angry'
        }
        emotions = {emotion_mapping.get(item['label'].lower(), 'neutral'): item['score']
                    for item in result if item['label'].lower() in emotion_mapping}

        dominant_emotion = max(emotions.items(), key=lambda x: x[1])
        response_map = {
            'happy': '😊 Радость',
            'sad': '😢 Грусть',
            'angry': '😠 Злость',
            'neutral': '😐 Нейтрально'
        }

        conn = get_db_connection()
        conn.execute(
            "INSERT INTO analysis_reports (user_id, content, emotion, confidence) VALUES (?, ?, ?, ?)",
            (current_user.id, transcribed_text, dominant_emotion[0], dominant_emotion[1])
        )
        conn.commit()
        conn.close()

        return jsonify({
            'emotion': response_map.get(dominant_emotion[0], 'неизвестно'),
            'confidence': round(dominant_emotion[1], 2),
            'transcribed_text': transcribed_text if transcribed_text else "Не удалось распознать текст"
        })
    except Exception as e:
        return jsonify({'error': str(e)}), 500


@app.route('/get_chats')
@login_required
def get_chats():
    conn = get_db_connection()
    try:
        chats = conn.execute(
            "SELECT chat_id, title FROM chats WHERE user_id = ? ORDER BY created_at DESC",
            (current_user.id,)
        ).fetchall()
        return jsonify([dict(chat) for chat in chats])
    finally:
        conn.close()


@app.route('/start_chat', methods=['POST'])
@login_required
def start_chat():
    conn = get_db_connection()
    try:
        chat_id = str(uuid.uuid4())
        conn.execute(
            "INSERT INTO chats (chat_id, user_id, title, created_at) VALUES (?, ?, ?, ?)",
            (chat_id, current_user.id, f"Новый чат {datetime.now().strftime('%d.%m')}", datetime.now())
        )
        conn.commit()
        return jsonify({"chat_id": chat_id, "title": f"Новый чат {datetime.now().strftime('%d.%m')}"})
    except Exception as e:
        return jsonify({"error": str(e)}), 500
    finally:
        conn.close()


@app.route('/load_chat/<chat_id>')
@login_required
def load_chat(chat_id):
    conn = get_db_connection()
    try:
        # Получаем информацию о чате
        chat = conn.execute(
            "SELECT chat_id, title FROM chats WHERE chat_id = ? AND user_id = ?",
            (chat_id, current_user.id)
        ).fetchone()

        if not chat:
            return jsonify({"error": "Чат не найден"}), 404

        # Получаем сообщения чата
        messages = conn.execute(
            "SELECT sender, content FROM messages WHERE chat_id = ? ORDER BY timestamp ASC",
            (chat_id,)
        ).fetchall()

        return jsonify({
            "chat_id": chat["chat_id"],
            "title": chat["title"],
            "messages": [dict(msg) for msg in messages]
        })
    finally:
        conn.close()



@app.route('/save_message', methods=['POST'])
@login_required
def save_message():
    data = request.get_json()
    if not data or 'chat_id' not in data or 'content' not in data or 'sender' not in data:
        return jsonify({"error": "Неверные данные"}), 400

    conn = get_db_connection()
    try:
        # Проверяем, что чат принадлежит текущему пользователю
        chat = conn.execute(
            "SELECT chat_id FROM chats WHERE chat_id = ? AND user_id = ?",
            (data['chat_id'], current_user.id)
        ).fetchone()

        if not chat:
            return jsonify({"error": "Чат не найден"}), 404

        # Анализируем эмоцию в тексте
        emotion = "neutral"
        confidence = 0.0
        if text_classifier and data['content'].strip():
            try:
                predictions = text_classifier(data['content'])[0]
                top_prediction = max(predictions, key=lambda x: x["score"])
                emotion = top_prediction["label"]
                confidence = top_prediction["score"]

                # Сохраняем анализ в базу
                conn.execute(
                    "INSERT INTO analysis_reports (user_id, content, emotion, confidence) VALUES (?, ?, ?, ?)",
                    (current_user.id, data['content'], emotion, confidence)
                )
            except Exception as e:
                print(f"Ошибка анализа эмоции: {e}")

        # Сохраняем сообщение
        conn.execute(
            "INSERT INTO messages (chat_id, sender, content, timestamp) VALUES (?, ?, ?, ?)",
            (data['chat_id'], data['sender'], data['content'], datetime.now())
        )
        conn.commit()

        return jsonify({
            "status": "success",
            "emotion": emotion_map.get(emotion, "❓ Неизвестно"),
            "confidence": round(confidence, 2)
        })
    except Exception as e:
        return jsonify({"error": str(e)}), 500
    finally:
        conn.close()

if __name__ == "__main__":
    app.run(debug=True)