File size: 5,448 Bytes
e68321e
 
 
 
 
 
 
 
 
ef479f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e68321e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef479f1
 
e68321e
ef479f1
e68321e
 
 
 
 
ef479f1
e68321e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef479f1
e68321e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f92c49
e68321e
b3d2362
 
 
 
 
 
e68321e
2f27065
e68321e
 
 
ef479f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import cv2
import requests
import os
import torch
import numpy as np
from yolov5.models.experimental import attempt_load
from yolov5.utils.general import non_max_suppression
from yolov5.utils.augmentations import letterbox
import gradio_client.utils

# --- Apply Monkey-Patch to Handle Boolean Schemas ---
# Save the original function
original_function = gradio_client.utils._json_schema_to_python_type

# Define a patched version that handles boolean schemas
def patched_function(schema, defs=None):
    if isinstance(schema, bool):
        return "any" if schema else "none"
    return original_function(schema, defs)

# Apply the patch
gradio_client.utils._json_schema_to_python_type = patched_function
# --- End of Monkey-Patch ---

# Example URLs for downloading images
file_urls = [
    "https://www.dropbox.com/scl/fi/n3bs5xnl2kanqmwv483k3/1_jpg.rf.4a59a63d0a7339d280dd18ef3c2e675a.jpg?rlkey=4n9dnls1byb4wm54ycxzx3ovi&st=ue5xv8yx&dl=0",
    "https://www.dropbox.com/scl/fi/asrmao4b4fpsrhqex8kog/2_jpg.rf.b87583d95aa220d4b7b532ae1948e7b7.jpg?rlkey=jkmux5jjy8euzhxizupdmpesb&st=v3ld14tx&dl=0",
    "https://www.dropbox.com/scl/fi/fi0e8zxqqy06asnu0robz/3_jpg.rf.d2932cce7e88c2675e300ececf9f1b82.jpg?rlkey=hfdqwxkxetabe38ukzbb39pl5&st=ga1uouhj&dl=0",
    "https://www.dropbox.com/scl/fi/ruobyat1ld1c33ch5yjpv/4_jpg.rf.3395c50b4db0ec0ed3448276965b2459.jpg?rlkey=j1m4qa0pmdh3rlr344v82u3am&st=lex8h3qi&dl=0",
    "https://www.dropbox.com/scl/fi/ok3izk4jj1pg6psxja3aj/5_jpg.rf.62f3dc64b6c894fbb165d8f6e2ee1382.jpg?rlkey=euu16z8fd8u8za4aflvu5qg4v&st=pwno39nc&dl=0",
    "https://www.dropbox.com/scl/fi/8r1fpwxkwq7c2i6ky6qv5/10_jpg.rf.c1785c33dd3552e860bf043c2fd0a379.jpg?rlkey=fcw41ppgzu0ao7xo6ijbpdi4c&st=to2udvxb&dl=0",
    "https://www.dropbox.com/scl/fi/ihiid7hbz1vvaoqrstwa5/7_jpg.rf.dfc30f9dc198cf6697d9023ac076e822.jpg?rlkey=yh67p4ex52wn9t0bfw0jr77ef&st=02qw80xa&dl=0",
]

def download_file(url, save_name):
    """Downloads a file from a URL."""
    if not os.path.exists(save_name):
        file = requests.get(url)
        with open(save_name, 'wb') as f:
            f.write(file.content)

# Download images
for i, url in enumerate(file_urls):
    download_file(url, f"image_{i}.jpg")

# Load YOLOv5 model
model_path = "best.pt"  # Ensure this path points to your YOLOv5 model file in the Space
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # Use GPU if available
model = attempt_load(model_path, device=device)
model.eval()  # Set the model to evaluation mode

def preprocess_image(image_path):
    img0 = cv2.imread(image_path)
    img = letterbox(img0, 640, stride=32, auto=True)[0]  # Resize and pad to 640x640
    img = img.transpose(2, 0, 1)[::-1]  # Convert BGR to RGB, to 3x640x640
    img = np.ascontiguousarray(img)
    img = torch.from_numpy(img).to(device)
    img = img.float()  # uint8 to fp16/32
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    return img, img0

def infer(model, img):
    with torch.no_grad():
        pred = model(img)[0]
    return pred

def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    coords[:, :4].clip_(min=0, max=img1_shape[0])  # clip boxes
    return coords

def postprocess(pred, img0_shape, img):
    pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False)
    results = []
    for det in pred:  # detections per image
        if len(det):
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0_shape).round()
            for *xyxy, conf, cls in reversed(det):
                results.append((xyxy, conf, cls))
    return results

def detect_objects(image_path):
    img, img0 = preprocess_image(image_path)
    pred = infer(model, img)
    results = postprocess(pred, img0.shape, img)
    return results

def draw_bounding_boxes(img, results):
    for (x1, y1, x2, y2), conf, cls in results:
        x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
        cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
        cv2.putText(img, f'{model.names[int(cls)]} {conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
    return img

def show_preds_image(filepath):
    results = detect_objects(filepath)
    img0 = cv2.imread(filepath)
    img_with_boxes = draw_bounding_boxes(img0, results)
    return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)

# Define Gradio components
input_component = gr.components.Image(type="filepath", label="Input Image")
output_component = gr.components.Image(type="numpy", label="Output Image")

# Create Gradio interface
interface = gr.Interface(
    fn=show_preds_image,
    inputs=input_component,
    outputs=output_component,
    title="Lung Nodule Detection",
    examples=[
        "image_1.jpg",
        "image_2.jpg",
        "image_3.jpg",
        "image_4.jpg",
        "image_5.jpg",
        "image_6.jpg",
    ],
    description=' Lung cancer cell detection',
    live=False,
)

interface.launch()