import gradio as gr import cv2 import requests import os import torch import numpy as np from yolov5.models.experimental import attempt_load from yolov5.utils.general import non_max_suppression from yolov5.utils.augmentations import letterbox import gradio_client.utils # --- Apply Monkey-Patch to Handle Boolean Schemas --- # Save the original function original_function = gradio_client.utils._json_schema_to_python_type # Define a patched version that handles boolean schemas def patched_function(schema, defs=None): if isinstance(schema, bool): return "any" if schema else "none" return original_function(schema, defs) # Apply the patch gradio_client.utils._json_schema_to_python_type = patched_function # --- End of Monkey-Patch --- # Example URLs for downloading images file_urls = [ "https://www.dropbox.com/scl/fi/n3bs5xnl2kanqmwv483k3/1_jpg.rf.4a59a63d0a7339d280dd18ef3c2e675a.jpg?rlkey=4n9dnls1byb4wm54ycxzx3ovi&st=ue5xv8yx&dl=0", "https://www.dropbox.com/scl/fi/asrmao4b4fpsrhqex8kog/2_jpg.rf.b87583d95aa220d4b7b532ae1948e7b7.jpg?rlkey=jkmux5jjy8euzhxizupdmpesb&st=v3ld14tx&dl=0", "https://www.dropbox.com/scl/fi/fi0e8zxqqy06asnu0robz/3_jpg.rf.d2932cce7e88c2675e300ececf9f1b82.jpg?rlkey=hfdqwxkxetabe38ukzbb39pl5&st=ga1uouhj&dl=0", "https://www.dropbox.com/scl/fi/ruobyat1ld1c33ch5yjpv/4_jpg.rf.3395c50b4db0ec0ed3448276965b2459.jpg?rlkey=j1m4qa0pmdh3rlr344v82u3am&st=lex8h3qi&dl=0", "https://www.dropbox.com/scl/fi/ok3izk4jj1pg6psxja3aj/5_jpg.rf.62f3dc64b6c894fbb165d8f6e2ee1382.jpg?rlkey=euu16z8fd8u8za4aflvu5qg4v&st=pwno39nc&dl=0", "https://www.dropbox.com/scl/fi/8r1fpwxkwq7c2i6ky6qv5/10_jpg.rf.c1785c33dd3552e860bf043c2fd0a379.jpg?rlkey=fcw41ppgzu0ao7xo6ijbpdi4c&st=to2udvxb&dl=0", "https://www.dropbox.com/scl/fi/ihiid7hbz1vvaoqrstwa5/7_jpg.rf.dfc30f9dc198cf6697d9023ac076e822.jpg?rlkey=yh67p4ex52wn9t0bfw0jr77ef&st=02qw80xa&dl=0", ] def download_file(url, save_name): """Downloads a file from a URL.""" if not os.path.exists(save_name): file = requests.get(url) with open(save_name, 'wb') as f: f.write(file.content) # Download images for i, url in enumerate(file_urls): download_file(url, f"image_{i}.jpg") # Load YOLOv5 model model_path = "best.pt" # Ensure this path points to your YOLOv5 model file in the Space device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if available model = attempt_load(model_path, device=device) model.eval() # Set the model to evaluation mode def preprocess_image(image_path): img0 = cv2.imread(image_path) img = letterbox(img0, 640, stride=32, auto=True)[0] # Resize and pad to 640x640 img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB, to 3x640x640 img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(device) img = img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) return img, img0 def infer(model, img): with torch.no_grad(): pred = model(img)[0] return pred def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): if ratio_pad is None: # calculate from img0_shape gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain coords[:, :4].clip_(min=0, max=img1_shape[0]) # clip boxes return coords def postprocess(pred, img0_shape, img): pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False) results = [] for det in pred: # detections per image if len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0_shape).round() for *xyxy, conf, cls in reversed(det): results.append((xyxy, conf, cls)) return results def detect_objects(image_path): img, img0 = preprocess_image(image_path) pred = infer(model, img) results = postprocess(pred, img0.shape, img) return results def draw_bounding_boxes(img, results): for (x1, y1, x2, y2), conf, cls in results: x1, y1, x2, y2 = map(int, [x1, y1, x2, y2]) cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2) cv2.putText(img, f'{model.names[int(cls)]} {conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2) return img def show_preds_image(filepath): results = detect_objects(filepath) img0 = cv2.imread(filepath) img_with_boxes = draw_bounding_boxes(img0, results) return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB) # Define Gradio components input_component = gr.components.Image(type="filepath", label="Input Image") output_component = gr.components.Image(type="numpy", label="Output Image") # Create Gradio interface interface = gr.Interface( fn=show_preds_image, inputs=input_component, outputs=output_component, title="Lung Nodule Detection", examples=[ "image_1.jpg", "image_2.jpg", "image_3.jpg", "image_4.jpg", "image_5.jpg", "image_6.jpg", ], description=' Lung cancer cell detection', live=False, ) interface.launch()