|
import torch |
|
import spaces |
|
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig |
|
from peft import PeftModel, PeftConfig |
|
import os |
|
import unicodedata |
|
from huggingface_hub import login |
|
|
|
max_length = 512 |
|
auth_token = os.getenv('HF_SPACE_TOKEN') |
|
login(token=auth_token) |
|
|
|
|
|
@spaces.GPU |
|
def goai_traduction(text, src_lang, tgt_lang): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
if src_lang == "mos_Latn" and tgt_lang == "fra_Latn": |
|
model_id = "ArissBandoss/3b-new-400" |
|
else: |
|
model_id = "ArissBandoss/nllb-200-distilled-600M-finetuned-fr-to-mos-V4" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, token=auth_token) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, token=auth_token).to(device) |
|
|
|
|
|
tokenizer.src_lang = src_lang |
|
|
|
|
|
inputs = tokenizer(text, return_tensors="pt", truncation=False).to(device) |
|
input_length = inputs["input_ids"].shape[1] |
|
|
|
|
|
|
|
tgt_lang_id = tokenizer.convert_tokens_to_ids(tgt_lang) |
|
|
|
|
|
eos_token_id = tokenizer.eos_token_id |
|
|
|
|
|
outputs = model.generate( |
|
**inputs, |
|
forced_bos_token_id=tgt_lang_id, |
|
max_new_tokens=1024, |
|
num_beams=5, |
|
repetition_penalty=2.0, |
|
length_penalty=2, |
|
) |
|
|
|
|
|
translation = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] |
|
|
|
return translation |
|
|
|
def real_time_traduction(input_text, src_lang, tgt_lang): |
|
return goai_traduction(input_text, src_lang, tgt_lang) |