Spaces:
Running
Running
import torch | |
import gradio as gr | |
from PIL import Image | |
import scipy.io.wavfile as wavfile | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") | |
narrator = pipeline("text-to-speech",model="kakao-enterprise/vits-ljs") | |
def generate_audio(text): | |
# Generate the narrated text | |
narrated_text = narrator(text) | |
# Save the audio to a WAV file | |
wavfile.write("output.wav", rate=narrated_text["sampling_rate"], | |
data=narrated_text["audio"][0]) | |
# Return the path to the saved audio file | |
return "output.wav" | |
def caption_my_image(pil_image): | |
semantics = caption_image(pil_image)[0]['generated_text'] | |
return generate_audio(semantics) | |
demo = gr.Interface(fn=caption_my_image, | |
inputs=[gr.Image(label="Select Image",type="pil")], | |
outputs=[gr.Audio(label="Image Caption")], | |
title="Image Captioning by Arnav Anand", | |
description="THIS APPLICATION WILL BE USED TO CAPTION THE IMAGE WITH THE HELP OF AI.") | |
demo.launch() |