File size: 1,967 Bytes
d868d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import logging
from typing import Optional, Union

from pytorch_ie import PieDataModule
from pytorch_ie.core.taskmodule import IterableTaskEncodingDataset, TaskEncodingDataset
from torch.utils.data import DataLoader, Sampler

from .components.sampler import ImbalancedDatasetSampler

logger = logging.getLogger(__name__)


class PieDataModuleWithSampler(PieDataModule):

    def __init__(
        self,
        train_sampler: Optional[str] = None,
        dont_shuffle_train: bool = False,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)

        self.train_sampler_name = train_sampler
        self.dont_shuffle_train = dont_shuffle_train

    def get_train_sampler(
        self,
        dataset: Union[TaskEncodingDataset, IterableTaskEncodingDataset],
    ) -> Optional[Sampler]:
        if self.train_sampler_name is None:
            return None
        elif self.train_sampler_name == "imbalanced_dataset":
            # for now, this work only with targets that have a single entry
            return ImbalancedDatasetSampler(
                dataset, callback_get_label=lambda ds: [x.targets[0] for x in ds]
            )
        else:
            raise ValueError(f"unknown sampler name: {self.train_sampler_name}")

    def train_dataloader(self) -> DataLoader:
        ds = self.data_split(self.train_split)
        sampler = self.get_train_sampler(dataset=ds)
        # don't shuffle if we explicitly set dont_shuffle_train,
        # streamed datasets or if we use a sampler or
        shuffle = not (
            self.dont_shuffle_train
            or isinstance(ds, IterableTaskEncodingDataset)
            or sampler is not None
        )

        if not shuffle:
            logger.warning("not shuffling train dataloader")
        return DataLoader(
            dataset=ds,
            sampler=sampler,
            collate_fn=self.taskmodule.collate,
            shuffle=shuffle,
            **self.dataloader_kwargs,
        )