File size: 13,256 Bytes
3133b5e ced4316 3133b5e ced4316 3133b5e d868d2e 3133b5e ced4316 3133b5e d868d2e 3133b5e ced4316 3133b5e d868d2e 3133b5e ced4316 d868d2e 3133b5e d868d2e 3133b5e d868d2e 3133b5e d868d2e 3133b5e ced4316 3133b5e ced4316 3133b5e ced4316 3133b5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import json
import logging
import os
import tempfile
from pathlib import Path
from typing import Iterable, List, Optional, Sequence
import gradio as gr
import pandas as pd
from acl_anthology import Anthology
from pie_datasets import Dataset, IterableDataset, load_dataset
from pytorch_ie import Pipeline
from pytorch_ie.documents import (
TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
)
from tqdm import tqdm
from src.demo.annotation_utils import create_documents, get_merger
from src.demo.data_utils import load_text_from_arxiv
from src.demo.rendering_utils import (
RENDER_WITH_DISPLACY,
RENDER_WITH_PRETTY_TABLE,
render_displacy,
render_pretty_table,
)
from src.demo.retriever_utils import get_text_spans_and_relations_from_document
from src.langchain_modules import (
DocumentAwareSpanRetriever,
DocumentAwareSpanRetrieverWithRelations,
)
from src.utils.pdf_utils.acl_anthology_utils import XML2RawPapers
from src.utils.pdf_utils.process_pdf import FulltextExtractor, PDFDownloader
logger = logging.getLogger(__name__)
def add_annotated_pie_documents(
retriever: DocumentAwareSpanRetriever,
pie_documents: Sequence[TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions],
use_predicted_annotations: bool,
verbose: bool = False,
) -> None:
if verbose:
gr.Info(f"Create span embeddings for {len(pie_documents)} documents...")
num_docs_before = len(retriever.docstore)
retriever.add_pie_documents(pie_documents, use_predicted_annotations=use_predicted_annotations)
# number of documents that were overwritten
num_overwritten_docs = num_docs_before + len(pie_documents) - len(retriever.docstore)
# warn if documents were overwritten
if num_overwritten_docs > 0:
gr.Warning(f"{num_overwritten_docs} documents were overwritten.")
def process_texts(
texts: Iterable[str],
doc_ids: Iterable[str],
argumentation_model: Optional[Pipeline],
retriever: DocumentAwareSpanRetriever,
split_regex_escaped: Optional[str],
handle_parts_of_same: bool = False,
verbose: bool = False,
) -> None:
# check that doc_ids are unique
if len(set(doc_ids)) != len(list(doc_ids)):
raise gr.Error("Document IDs must be unique.")
pie_documents = create_documents(
texts=texts,
doc_ids=doc_ids,
split_regex=split_regex_escaped,
)
if argumentation_model is not None:
if verbose:
gr.Info(f"Annotate {len(pie_documents)} documents...")
pie_documents = argumentation_model(pie_documents, inplace=True)
else:
gr.Warning(
"Annotation is disabled (no model was loaded). No annotations will be added to the documents."
)
# this needs to be done also if the documents are not annotated because
# it adjusts the document type
if handle_parts_of_same:
merger = get_merger()
pie_documents = [merger(document) for document in pie_documents]
add_annotated_pie_documents(
retriever=retriever,
pie_documents=pie_documents,
use_predicted_annotations=True,
verbose=verbose,
)
def add_annotated_pie_documents_from_dataset(
retriever: DocumentAwareSpanRetriever, verbose: bool = False, **load_dataset_kwargs
) -> None:
try:
gr.Info(
"Loading PIE dataset with parameters:\n" + json.dumps(load_dataset_kwargs, indent=2)
)
dataset = load_dataset(**load_dataset_kwargs)
if not isinstance(dataset, (Dataset, IterableDataset)):
raise gr.Error("Loaded dataset is not of type PIE (Iterable)Dataset.")
try:
dataset_converted = dataset.to_document_type(
TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions
)
except ValueError:
gr.Warning(
"The dataset does not seem to have registered converter to create multi-spans. "
"Try to Load as single-spans and to convert to multi-spans manually ..."
)
dataset_converted_single_span = dataset.to_document_type(
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
)
merger = get_merger()
dataset_converted = dataset_converted_single_span.map(
merger,
result_document_type=TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
)
def _clear_metadata(
doc: TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
) -> TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions:
result = doc.copy()
result.metadata = dict()
return result
# adding documents with different metadata format to the retriever breaks it,
# so we clear the metadata field beforehand
dataset_converted_without_metadata = dataset_converted.map(
_clear_metadata,
result_document_type=TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
)
add_annotated_pie_documents(
retriever=retriever,
pie_documents=dataset_converted_without_metadata,
use_predicted_annotations=False,
verbose=verbose,
)
except Exception as e:
raise gr.Error(f"Failed to load dataset: {e}")
def wrapped_process_text(
doc_id: str, text: str, retriever: DocumentAwareSpanRetriever, **kwargs
) -> str:
try:
process_texts(doc_ids=[doc_id], texts=[text], retriever=retriever, **kwargs)
except Exception as e:
raise gr.Error(f"Failed to process text: {e}")
# Return as dict and document to avoid serialization issues
return doc_id
def process_uploaded_files(
file_names: List[str],
retriever: DocumentAwareSpanRetriever,
layer_captions: dict[str, str],
**kwargs,
) -> pd.DataFrame:
try:
doc_ids = []
texts = []
for file_name in file_names:
if file_name.lower().endswith(".txt"):
# read the file content
with open(file_name, "r", encoding="utf-8") as f:
text = f.read()
base_file_name = os.path.basename(file_name)
doc_ids.append(base_file_name)
texts.append(text)
else:
raise gr.Error(f"Unsupported file format: {file_name}")
process_texts(texts=texts, doc_ids=doc_ids, retriever=retriever, verbose=True, **kwargs)
except Exception as e:
raise gr.Error(f"Failed to process uploaded files: {e}")
return retriever.docstore.overview(layer_captions=layer_captions, use_predictions=True)
def process_uploaded_pdf_files(
pdf_fulltext_extractor: Optional[FulltextExtractor],
file_names: List[str],
retriever: DocumentAwareSpanRetriever,
layer_captions: dict[str, str],
**kwargs,
) -> pd.DataFrame:
try:
if pdf_fulltext_extractor is None:
raise gr.Error("PDF fulltext extractor is not available.")
doc_ids = []
texts = []
for file_name in file_names:
if file_name.lower().endswith(".pdf"):
# extract the fulltext from the pdf
text_and_extraction_data = pdf_fulltext_extractor(file_name)
if text_and_extraction_data is None:
raise gr.Error(f"Failed to extract fulltext from PDF: {file_name}")
text, _ = text_and_extraction_data
base_file_name = os.path.basename(file_name)
doc_ids.append(base_file_name)
texts.append(text)
else:
raise gr.Error(f"Unsupported file format: {file_name}")
process_texts(texts=texts, doc_ids=doc_ids, retriever=retriever, verbose=True, **kwargs)
except Exception as e:
raise gr.Error(f"Failed to process uploaded files: {e}")
return retriever.docstore.overview(layer_captions=layer_captions, use_predictions=True)
def load_acl_anthology_venues(
venues: List[str],
pdf_fulltext_extractor: Optional[FulltextExtractor],
retriever: DocumentAwareSpanRetriever,
layer_captions: dict[str, str],
acl_anthology_data_dir: Optional[str],
pdf_output_dir: Optional[str],
show_progress: bool = True,
**kwargs,
) -> pd.DataFrame:
try:
if pdf_fulltext_extractor is None:
raise gr.Error("PDF fulltext extractor is not available.")
if acl_anthology_data_dir is None:
raise gr.Error("ACL Anthology data directory is not provided.")
if pdf_output_dir is None:
raise gr.Error("PDF output directory is not provided.")
xml2raw_papers = XML2RawPapers(
anthology=Anthology(datadir=Path(acl_anthology_data_dir)),
venue_id_whitelist=venues,
verbose=False,
)
pdf_downloader = PDFDownloader()
doc_ids = []
texts = []
os.makedirs(pdf_output_dir, exist_ok=True)
papers = xml2raw_papers()
if show_progress:
papers_list = list(papers)
papers = tqdm(papers_list, desc="extracting fulltext")
gr.Info(
f"Downloading and extracting fulltext from {len(papers_list)} papers in venues: {venues}"
)
for paper in papers:
if paper.url is not None:
pdf_save_path = pdf_downloader.download(
paper.url, opath=Path(pdf_output_dir) / f"{paper.name}.pdf"
)
fulltext_extraction_output = pdf_fulltext_extractor(pdf_save_path)
if fulltext_extraction_output:
text, _ = fulltext_extraction_output
doc_id = f"aclanthology.org/{paper.name}"
doc_ids.append(doc_id)
texts.append(text)
else:
gr.Warning(f"Failed to extract fulltext from PDF: {paper.url}")
process_texts(texts=texts, doc_ids=doc_ids, retriever=retriever, verbose=True, **kwargs)
except Exception as e:
raise gr.Error(f"Failed to process uploaded files: {e}")
return retriever.docstore.overview(layer_captions=layer_captions, use_predictions=True)
def wrapped_add_annotated_pie_documents_from_dataset(
retriever: DocumentAwareSpanRetriever, verbose: bool, layer_captions: dict[str, str], **kwargs
) -> pd.DataFrame:
try:
add_annotated_pie_documents_from_dataset(retriever=retriever, verbose=verbose, **kwargs)
except Exception as e:
raise gr.Error(f"Failed to add annotated PIE documents from dataset: {e}")
return retriever.docstore.overview(layer_captions=layer_captions, use_predictions=True)
def download_processed_documents(
retriever: DocumentAwareSpanRetriever,
file_name: str = "retriever_store",
) -> Optional[str]:
if len(retriever.docstore) == 0:
gr.Warning("No documents to download.")
return None
# zip the directory
file_path = os.path.join(tempfile.gettempdir(), file_name)
gr.Info(f"Zipping the retriever store to '{file_name}' ...")
result_file_path = retriever.save_to_archive(base_name=file_path, format="zip")
return result_file_path
def upload_processed_documents(
file_name: str,
retriever: DocumentAwareSpanRetriever,
layer_captions: dict[str, str],
) -> pd.DataFrame:
# load the documents from the zip file or directory
retriever.load_from_disc(file_name)
# return the overview of the document store
return retriever.docstore.overview(layer_captions=layer_captions, use_predictions=True)
def process_text_from_arxiv(
arxiv_id: str, retriever: DocumentAwareSpanRetriever, abstract_only: bool = False, **kwargs
) -> str:
try:
text, doc_id = load_text_from_arxiv(arxiv_id=arxiv_id, abstract_only=abstract_only)
except Exception as e:
raise gr.Error(f"Failed to load text from arXiv: {e}")
return wrapped_process_text(doc_id=doc_id, text=text, retriever=retriever, **kwargs)
def render_annotated_document(
retriever: DocumentAwareSpanRetrieverWithRelations,
document_id: str,
render_with: str,
render_kwargs_json: str,
highlight_span_ids: Optional[List[str]] = None,
) -> str:
text, spans, span_id2idx, relations = get_text_spans_and_relations_from_document(
retriever=retriever, document_id=document_id
)
render_kwargs = json.loads(render_kwargs_json)
if render_with == RENDER_WITH_PRETTY_TABLE:
html = render_pretty_table(
text=text,
spans=spans,
span_id2idx=span_id2idx,
binary_relations=relations,
**render_kwargs,
)
elif render_with == RENDER_WITH_DISPLACY:
html = render_displacy(
text=text,
spans=spans,
span_id2idx=span_id2idx,
binary_relations=relations,
highlight_span_ids=highlight_span_ids,
**render_kwargs,
)
else:
raise ValueError(f"Unknown render_with value: {render_with}")
return html
|