File size: 8,040 Bytes
d868d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from collections import Counter
from typing import Dict, Hashable, List, Optional, Sequence, Tuple, TypeVar

import numpy as np
from pytorch_ie import Annotation, Document, DocumentMetric
from pytorch_ie.annotations import BinaryRelation

from src.utils.graph_utils import get_connected_components


class CorefHoiEvaluator(object):
    def __init__(self, metric, beta=1):
        self.p_num = 0
        self.p_den = 0
        self.r_num = 0
        self.r_den = 0
        self.metric = metric
        self.beta = beta

    def update(self, predicted, gold, mention_to_predicted, mention_to_gold):
        if self.metric == ceafe_simplified:
            pn, pd, rn, rd = self.metric(predicted, gold)
        else:
            pn, pd = self.metric(predicted, mention_to_gold)
            rn, rd = self.metric(gold, mention_to_predicted)
        self.p_num += pn
        self.p_den += pd
        self.r_num += rn
        self.r_den += rd

    def f1(self, p_num, p_den, r_num, r_den, beta=1):
        p = 0 if p_den == 0 else p_num / float(p_den)
        r = 0 if r_den == 0 else r_num / float(r_den)
        return 0 if p + r == 0 else (1 + beta * beta) * p * r / (beta * beta * p + r)

    def get_f1(self):
        return self.f1(self.p_num, self.p_den, self.r_num, self.r_den, beta=self.beta)

    def get_recall(self):
        return 0 if self.r_num == 0 else self.r_num / float(self.r_den)

    def get_precision(self):
        return 0 if self.p_num == 0 else self.p_num / float(self.p_den)

    def get_prf(self):
        return self.get_precision(), self.get_recall(), self.get_f1()

    def get_counts(self):
        return self.p_num, self.p_den, self.r_num, self.r_den


def b_cubed_simplified(clusters, mention_to_gold):
    num, dem = 0, 0
    for c in clusters:
        if len(c) == 1:
            continue

        gold_counts = Counter()
        correct = 0
        for m in c:
            if m in mention_to_gold:
                gold_counts[tuple(mention_to_gold[m])] += 1
        for c2, count in gold_counts.items():
            if len(c2) != 1:
                correct += count * count

        num += correct / float(len(c))
        dem += len(c)
    return num, dem


def muc_simplified(clusters, mention_to_gold):
    tp, p = 0, 0
    for c in clusters:
        p += len(c) - 1
        tp += len(c)
        linked = set()
        for m in c:
            if m in mention_to_gold:
                linked.add(mention_to_gold[m])
            else:
                tp -= 1
        tp -= len(linked)
    return tp, p


def phi4_simplified(c1, c2):
    return 2 * len([m for m in c1 if m in c2]) / float(len(c1) + len(c2))


def ceafe_simplified(clusters, gold_clusters):
    # lazy import to not force scipy installation
    from scipy.optimize import linear_sum_assignment as linear_assignment

    clusters = [c for c in clusters if len(c) != 1]
    scores = np.zeros((len(gold_clusters), len(clusters)))
    for i in range(len(gold_clusters)):
        for j in range(len(clusters)):
            scores[i, j] = phi4_simplified(gold_clusters[i], clusters[j])
    matching = linear_assignment(-scores)
    matching = np.transpose(np.asarray(matching))
    similarity = sum(scores[matching[:, 0], matching[:, 1]])
    return similarity, len(clusters), similarity, len(gold_clusters)


def lea_simplified(clusters, mention_to_gold):
    num, dem = 0, 0

    for c in clusters:
        if len(c) == 1:
            continue

        common_links = 0
        all_links = len(c) * (len(c) - 1) / 2.0
        for i, m in enumerate(c):
            if m in mention_to_gold:
                for m2 in c[i + 1 :]:
                    if m2 in mention_to_gold and mention_to_gold[m] == mention_to_gold[m2]:
                        common_links += 1

        num += len(c) * common_links / float(all_links)
        dem += len(c)

    return num, dem


H = TypeVar("H", bound=Hashable)


class CorefHoiF1(DocumentMetric):
    """
    Coreference evaluation based on official coref-hoi evaluation script, i.e.,
    https://github.com/lxucs/coref-hoi/blob/5ddfc3b64a5519c3555b5a57e47ab2f03c104a60/metrics.py.

    The metric expects documents with a relation layer that contains binary relations
    between mentions from the same coreference cluster. Works with relations targeting
    mentions from multiple layers (e.g., cross-textual relations).

    Args:
        relation_layer: The name of the relation layer that contains the link relations.
        include_singletons: If True (default), singletons will be included in the evaluation.
        link_relation_label: If provided, only the relations with this label will be used
            to create the clusters.
        link_relation_relation_score_threshold: If provided, only the relations with a score
            greater than or equal to this threshold will be used to create the clusters.
    """

    def __init__(
        self,
        relation_layer: str,
        include_singletons: bool = True,
        link_relation_label: Optional[str] = None,
        link_relation_relation_score_threshold: Optional[float] = None,
    ) -> None:
        super().__init__()
        self.relation_layer = relation_layer
        self.link_relation_label = link_relation_label
        self.include_singletons = include_singletons
        self.link_relation_relation_score_threshold = link_relation_relation_score_threshold

    def reset(self) -> None:
        self.evaluators = [
            CorefHoiEvaluator(m) for m in (muc_simplified, b_cubed_simplified, ceafe_simplified)
        ]

    def prepare_clusters_with_mapping(
        self, mentions: Sequence[Annotation], relations: Sequence[BinaryRelation]
    ) -> Tuple[List[List[Annotation]], Dict[Annotation, Tuple[Annotation]]]:

        # get connected components based on binary relations
        connected_components = get_connected_components(
            elements=mentions,
            relations=relations,
            link_relation_label=self.link_relation_label,
            link_relation_relation_score_threshold=self.link_relation_relation_score_threshold,
            add_singletons=self.include_singletons,
        )

        # store all clustered mentions in a list and
        # create a map from each mention to its cluster
        # (i.e. to the list of spans that includes all other mentions from the same cluster)
        clusters = []
        mention_to_cluster = dict()
        for cluster in connected_components:
            clusters.append(cluster)
            for mention in cluster:
                mention_to_cluster[mention] = tuple(cluster)

        return clusters, mention_to_cluster

    def _update(self, doc: Document) -> None:
        relation_layer = doc[self.relation_layer]
        gold_mentions = []
        predicted_mentions = []
        for mention_layer in relation_layer.target_layers.values():
            gold_mentions.extend(mention_layer)
            predicted_mentions.extend(mention_layer.predictions)

        # prepare the clusters and mention-to-cluster mapping needed for evaluation
        predicted_clusters, mention_to_predicted = self.prepare_clusters_with_mapping(
            mentions=predicted_mentions, relations=relation_layer.predictions
        )
        gold_clusters, mention_to_gold = self.prepare_clusters_with_mapping(
            mentions=gold_mentions, relations=relation_layer
        )

        for e in self.evaluators:
            e.update(predicted_clusters, gold_clusters, mention_to_predicted, mention_to_gold)

    def get_f1(self) -> float:
        return sum(e.get_f1() for e in self.evaluators) / len(self.evaluators)

    def get_recall(self) -> float:
        return sum(e.get_recall() for e in self.evaluators) / len(self.evaluators)

    def get_precision(self) -> float:
        return sum(e.get_precision() for e in self.evaluators) / len(self.evaluators)

    def get_prf(self) -> Tuple[float, float, float]:
        return self.get_precision(), self.get_recall(), self.get_f1()

    def _compute(self) -> float:
        return self.get_f1()