update from https://github.com/ArneBinder/argumentation-structure-identification/pull/529
d868d2e
verified
import pyrootutils | |
root = pyrootutils.setup_root( | |
search_from=__file__, | |
indicator=[".project-root"], | |
pythonpath=True, | |
dotenv=True, | |
) | |
# ------------------------------------------------------------------------------------ # | |
# `pyrootutils.setup_root(...)` is an optional line at the top of each entry file | |
# that helps to make the environment more robust and convenient | |
# | |
# the main advantages are: | |
# - allows you to keep all entry files in "src/" without installing project as a package | |
# - makes paths and scripts always work no matter where is your current work dir | |
# - automatically loads environment variables from ".env" file if exists | |
# | |
# how it works: | |
# - the line above recursively searches for either ".git" or "pyproject.toml" in present | |
# and parent dirs, to determine the project root dir | |
# - adds root dir to the PYTHONPATH (if `pythonpath=True`), so this file can be run from | |
# any place without installing project as a package | |
# - sets PROJECT_ROOT environment variable which is used in "configs/paths/default.yaml" | |
# to make all paths always relative to the project root | |
# - loads environment variables from ".env" file in root dir (if `dotenv=True`) | |
# | |
# you can remove `pyrootutils.setup_root(...)` if you: | |
# 1. either install project as a package or move each entry file to the project root dir | |
# 2. simply remove PROJECT_ROOT variable from paths in "configs/paths/default.yaml" | |
# 3. always run entry files from the project root dir | |
# | |
# https://github.com/ashleve/pyrootutils | |
# ------------------------------------------------------------------------------------ # | |
from typing import Tuple | |
import hydra | |
import pytorch_lightning as pl | |
from omegaconf import DictConfig | |
from pie_datasets import DatasetDict | |
from pie_modules.models import * # noqa: F403 | |
from pie_modules.taskmodules import * # noqa: F403 | |
from pytorch_ie import PieDataModule | |
from pytorch_ie.core import PyTorchIEModel, TaskModule | |
from pytorch_ie.models import * # noqa: F403 | |
from pytorch_ie.taskmodules import * # noqa: F403 | |
from pytorch_lightning import Trainer | |
from src import utils | |
from src.models import * # noqa: F403 | |
from src.taskmodules import * # noqa: F403 | |
log = utils.get_pylogger(__name__) | |
def evaluate(cfg: DictConfig) -> Tuple[dict, dict]: | |
"""Evaluates given checkpoint on a datamodule testset. | |
This method is wrapped in optional @task_wrapper decorator which applies extra utilities | |
before and after the call. | |
Args: | |
cfg (DictConfig): Configuration composed by Hydra. | |
Returns: | |
Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects. | |
""" | |
# Set seed for random number generators in pytorch, numpy and python.random | |
if cfg.get("seed"): | |
pl.seed_everything(cfg.seed, workers=True) | |
# Init pytorch-ie dataset | |
log.info(f"Instantiating dataset <{cfg.dataset._target_}>") | |
dataset: DatasetDict = hydra.utils.instantiate(cfg.dataset, _convert_="partial") | |
# Init pytorch-ie taskmodule | |
log.info(f"Instantiating taskmodule <{cfg.taskmodule._target_}>") | |
taskmodule: TaskModule = hydra.utils.instantiate(cfg.taskmodule, _convert_="partial") | |
# auto-convert the dataset if the taskmodule specifies a document type | |
dataset = dataset.to_document_type(taskmodule, downcast=False) | |
# Init pytorch-ie datamodule | |
log.info(f"Instantiating datamodule <{cfg.datamodule._target_}>") | |
datamodule: PieDataModule = hydra.utils.instantiate( | |
cfg.datamodule, dataset=dataset, taskmodule=taskmodule, _convert_="partial" | |
) | |
# Init pytorch-ie model | |
log.info(f"Instantiating model <{cfg.model._target_}>") | |
model: PyTorchIEModel = hydra.utils.instantiate(cfg.model, _convert_="partial") | |
# Init lightning loggers | |
logger = utils.instantiate_dict_entries(cfg, "logger") | |
# Init lightning trainer | |
log.info(f"Instantiating trainer <{cfg.trainer._target_}>") | |
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, logger=logger, _convert_="partial") | |
object_dict = { | |
"cfg": cfg, | |
"taskmodule": taskmodule, | |
"dataset": dataset, | |
"model": model, | |
"logger": logger, | |
"trainer": trainer, | |
} | |
if logger: | |
log.info("Logging hyperparameters!") | |
utils.log_hyperparameters(logger=logger, model=model, taskmodule=taskmodule, config=cfg) | |
log.info("Starting testing!") | |
trainer.test(model=model, datamodule=datamodule, ckpt_path=cfg.ckpt_path) | |
# for predictions use trainer.predict(...) | |
# predictions = trainer.predict(model=model, dataloaders=dataloaders, ckpt_path=cfg.ckpt_path) | |
metric_dict = trainer.callback_metrics | |
return metric_dict, object_dict | |
def main(cfg: DictConfig) -> None: | |
metric_dict, _ = evaluate(cfg) | |
return metric_dict | |
if __name__ == "__main__": | |
utils.replace_sys_args_with_values_from_files() | |
utils.prepare_omegaconf() | |
main() | |