Full ARK-AI multi-modal setup
Browse files
app.py
CHANGED
@@ -1,126 +1,79 @@
|
|
1 |
-
#
|
2 |
-
import
|
3 |
-
from
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
def
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
audio_path = model(text)
|
64 |
-
audio_files.append(audio_path)
|
65 |
-
except Exception as e:
|
66 |
-
audio_files.append(None)
|
67 |
-
return audio_files[0] if audio_files else None
|
68 |
-
|
69 |
-
def generate_images(text):
|
70 |
-
imgs = []
|
71 |
-
for model in image_models:
|
72 |
-
try:
|
73 |
-
img = model(text)[0]['image']
|
74 |
-
imgs.append(img)
|
75 |
-
except Exception as e:
|
76 |
-
continue
|
77 |
-
return imgs[:3] # Show top 3 images
|
78 |
-
|
79 |
-
def generate_videos(text):
|
80 |
-
vids = []
|
81 |
-
for model in video_models:
|
82 |
-
try:
|
83 |
-
vid = model(text)
|
84 |
-
vids.append(vid)
|
85 |
-
except Exception as e:
|
86 |
-
continue
|
87 |
-
return vids[:1] # Show one video
|
88 |
-
|
89 |
-
# =============================
|
90 |
-
# MAIN ARK-AI FUNCTION
|
91 |
-
# =============================
|
92 |
-
|
93 |
-
def ark_ai_main(prompt):
|
94 |
-
# Text
|
95 |
-
text_output = merge_text_models(prompt)
|
96 |
-
|
97 |
-
# Inject personality
|
98 |
-
personality = "ARK-AI (fun, savage, chaotic-good) says:\n"
|
99 |
-
full_text = personality + text_output
|
100 |
|
101 |
-
#
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
gr.Gallery(label="Images Generated"),
|
118 |
-
gr.Video(label="Video Generated"),
|
119 |
-
gr.Audio(label="Audio Response")
|
120 |
-
],
|
121 |
-
title="ARK-AI Multi-Modal Assistant",
|
122 |
-
description="ARK-AI: Savage, funny, chaotic-good AI assistant merging text, image, audio, and video models.",
|
123 |
-
css="styles.css" # Optional: liquid-glass UI
|
124 |
-
)
|
125 |
-
|
126 |
-
iface.launch()
|
|
|
1 |
+
# Backend.py
|
2 |
+
from flask import Flask, request, jsonify
|
3 |
+
from flask_cors import CORS
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
|
7 |
+
app = Flask(__name__)
|
8 |
+
CORS(app)
|
9 |
+
|
10 |
+
# List of models
|
11 |
+
MODEL_PATHS = {
|
12 |
+
"gpt_oss_120b": "openai/gpt-oss-120b",
|
13 |
+
"deepseek_v3": "deepseek-ai/DeepSeek-V3.1-Base",
|
14 |
+
"gemini_25_pro": "afu4642tD/gemini-2.5-pro",
|
15 |
+
"veo3": "sudip1987/Generate_videos_with_Veo3",
|
16 |
+
"open_sora": "hpcai-tech/Open-Sora-v2",
|
17 |
+
"usp_image": "GD-ML/USP-Image_Generation",
|
18 |
+
"text_to_music": "sander-wood/text-to-music",
|
19 |
+
"qwen_image": "Qwen/Qwen-Image",
|
20 |
+
"qwen_image_diff": "Comfy-Org/Qwen-Image-DiffSynth-ControlNets",
|
21 |
+
"coqui_tts": "sk0032/coqui-tts-model",
|
22 |
+
"edge_tts": "sysf/Edge-TTS",
|
23 |
+
"whisper_large": "openai/whisper-large-v3-turbo",
|
24 |
+
"blip2_opt": "Salesforce/blip2-opt-2.7b",
|
25 |
+
"mini_gpt4": "Vision-CAIR/MiniGPT-4",
|
26 |
+
"glm_45": "zai-org/GLM-4.5",
|
27 |
+
"chatglm3": "zai-org/chatglm3-6b",
|
28 |
+
"gpt_oss_20b": "openai/gpt-oss-20b",
|
29 |
+
"m2m100": "facebook/m2m100_1.2B",
|
30 |
+
"tiny_marian": "onnx-community/tiny-random-MarianMTModel",
|
31 |
+
"memory_transformer": "Grpp/memory-transformer-ru",
|
32 |
+
"rl_memory_agent": "BytedTsinghua-SIA/RL-MemoryAgent-14B",
|
33 |
+
"m3_agent": "ByteDance-Seed/M3-Agent-Memorization",
|
34 |
+
"text_to_video": "ali-vilab/text-to-video-ms-1.7b"
|
35 |
+
}
|
36 |
+
|
37 |
+
def generate_single_answer(prompt, model_key):
|
38 |
+
"""Load model, generate answer, free memory"""
|
39 |
+
model_name = MODEL_PATHS[model_key]
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(
|
42 |
+
model_name,
|
43 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
44 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
45 |
+
)
|
46 |
+
|
47 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
48 |
+
with torch.no_grad():
|
49 |
+
output = model.generate(**inputs, max_new_tokens=200)
|
50 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
51 |
+
|
52 |
+
# Clean up to save memory
|
53 |
+
del model, tokenizer, inputs, output
|
54 |
+
torch.cuda.empty_cache()
|
55 |
+
|
56 |
+
return answer
|
57 |
+
|
58 |
+
@app.route("/ask", methods=["POST"])
|
59 |
+
def ask():
|
60 |
+
data = request.json
|
61 |
+
prompt = data.get("prompt", "")
|
62 |
+
selected_models = data.get("models", ["gpt_oss_120b", "deepseek_v3", "gemini_25_pro"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# Merge answers from all selected models
|
65 |
+
answers = []
|
66 |
+
for model_key in selected_models:
|
67 |
+
if model_key in MODEL_PATHS:
|
68 |
+
try:
|
69 |
+
ans = generate_single_answer(prompt, model_key)
|
70 |
+
answers.append(ans)
|
71 |
+
except Exception as e:
|
72 |
+
answers.append(f"[Error loading {model_key}]")
|
73 |
+
|
74 |
+
# Return one merged answer
|
75 |
+
final_answer = " | ".join(answers)
|
76 |
+
return jsonify({"answer": final_answer})
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
app.run(host="0.0.0.0", port=5000, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|