dummy_ui
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
from sklearn.linear_model import LinearRegression
|
5 |
+
|
6 |
+
# Generate synthetic data
|
7 |
+
np.random.seed(42)
|
8 |
+
n_samples = 500
|
9 |
+
|
10 |
+
# Company attributes
|
11 |
+
company_size = np.random.randint(50, 10000, n_samples) # Number of employees
|
12 |
+
industry_risk = np.random.choice([1, 2, 3, 4, 5], n_samples) # Risk level (1: Low, 5: High)
|
13 |
+
past_incidents = np.random.randint(0, 10, n_samples) # Number of past cyber incidents
|
14 |
+
security_measures = np.random.randint(1, 6, n_samples) # Security rating (1: Poor, 5: Excellent)
|
15 |
+
compliance = np.random.choice([0, 1], n_samples) # 1 if compliant, 0 otherwise
|
16 |
+
|
17 |
+
# Define premium based on attributes
|
18 |
+
base_premium = 5000
|
19 |
+
premium = (
|
20 |
+
base_premium + (company_size * 0.5) + (industry_risk * 2000) + (past_incidents * 1500)
|
21 |
+
- (security_measures * 1000) - (compliance * 3000) + np.random.normal(0, 2000, n_samples)
|
22 |
+
)
|
23 |
+
|
24 |
+
# Ensure minimum premium
|
25 |
+
premium = np.clip(premium, 2000, None)
|
26 |
+
|
27 |
+
# Create DataFrame
|
28 |
+
data = pd.DataFrame({
|
29 |
+
"Company Size": company_size,
|
30 |
+
"Industry Risk": industry_risk,
|
31 |
+
"Past Incidents": past_incidents,
|
32 |
+
"Security Measures": security_measures,
|
33 |
+
"Compliance": compliance,
|
34 |
+
"Premium": premium
|
35 |
+
})
|
36 |
+
|
37 |
+
# Fit a simple regression model to understand impact of variables
|
38 |
+
X = data[["Company Size", "Industry Risk", "Past Incidents", "Security Measures", "Compliance"]]
|
39 |
+
y = data["Premium"]
|
40 |
+
|
41 |
+
model = LinearRegression()
|
42 |
+
model.fit(X, y)
|
43 |
+
|
44 |
+
coefficients = pd.DataFrame({"Feature": X.columns, "Coefficient": model.coef_})
|
45 |
+
|
46 |
+
# Streamlit UI
|
47 |
+
st.title("Cyber Insurance Premium Estimator")
|
48 |
+
|
49 |
+
company_size_input = st.number_input("Company Size (Number of Employees)", min_value=50, max_value=10000, value=500)
|
50 |
+
industry_risk_input = st.selectbox("Industry Risk Level", [1, 2, 3, 4, 5])
|
51 |
+
past_incidents_input = st.number_input("Past Cyber Incidents", min_value=0, max_value=10, value=2)
|
52 |
+
security_measures_input = st.selectbox("Security Measures Rating", [1, 2, 3, 4, 5])
|
53 |
+
compliance_input = st.selectbox("Compliance Status", [0, 1], format_func=lambda x: "Compliant" if x == 1 else "Non-Compliant")
|
54 |
+
|
55 |
+
if st.button("Calculate Premium"):
|
56 |
+
input_data = np.array([[company_size_input, industry_risk_input, past_incidents_input, security_measures_input, compliance_input]])
|
57 |
+
predicted_premium = model.predict(input_data)[0]
|
58 |
+
st.subheader(f"Estimated Premium: ${predicted_premium:,.2f}")
|
59 |
+
|
60 |
+
st.subheader("Feature Importance")
|
61 |
+
st.write(coefficients)
|