Arpit08 commited on
Commit
db25bcd
·
verified ·
1 Parent(s): 00f07ce
Files changed (1) hide show
  1. app.py +61 -0
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import streamlit as st
4
+ from sklearn.linear_model import LinearRegression
5
+
6
+ # Generate synthetic data
7
+ np.random.seed(42)
8
+ n_samples = 500
9
+
10
+ # Company attributes
11
+ company_size = np.random.randint(50, 10000, n_samples) # Number of employees
12
+ industry_risk = np.random.choice([1, 2, 3, 4, 5], n_samples) # Risk level (1: Low, 5: High)
13
+ past_incidents = np.random.randint(0, 10, n_samples) # Number of past cyber incidents
14
+ security_measures = np.random.randint(1, 6, n_samples) # Security rating (1: Poor, 5: Excellent)
15
+ compliance = np.random.choice([0, 1], n_samples) # 1 if compliant, 0 otherwise
16
+
17
+ # Define premium based on attributes
18
+ base_premium = 5000
19
+ premium = (
20
+ base_premium + (company_size * 0.5) + (industry_risk * 2000) + (past_incidents * 1500)
21
+ - (security_measures * 1000) - (compliance * 3000) + np.random.normal(0, 2000, n_samples)
22
+ )
23
+
24
+ # Ensure minimum premium
25
+ premium = np.clip(premium, 2000, None)
26
+
27
+ # Create DataFrame
28
+ data = pd.DataFrame({
29
+ "Company Size": company_size,
30
+ "Industry Risk": industry_risk,
31
+ "Past Incidents": past_incidents,
32
+ "Security Measures": security_measures,
33
+ "Compliance": compliance,
34
+ "Premium": premium
35
+ })
36
+
37
+ # Fit a simple regression model to understand impact of variables
38
+ X = data[["Company Size", "Industry Risk", "Past Incidents", "Security Measures", "Compliance"]]
39
+ y = data["Premium"]
40
+
41
+ model = LinearRegression()
42
+ model.fit(X, y)
43
+
44
+ coefficients = pd.DataFrame({"Feature": X.columns, "Coefficient": model.coef_})
45
+
46
+ # Streamlit UI
47
+ st.title("Cyber Insurance Premium Estimator")
48
+
49
+ company_size_input = st.number_input("Company Size (Number of Employees)", min_value=50, max_value=10000, value=500)
50
+ industry_risk_input = st.selectbox("Industry Risk Level", [1, 2, 3, 4, 5])
51
+ past_incidents_input = st.number_input("Past Cyber Incidents", min_value=0, max_value=10, value=2)
52
+ security_measures_input = st.selectbox("Security Measures Rating", [1, 2, 3, 4, 5])
53
+ compliance_input = st.selectbox("Compliance Status", [0, 1], format_func=lambda x: "Compliant" if x == 1 else "Non-Compliant")
54
+
55
+ if st.button("Calculate Premium"):
56
+ input_data = np.array([[company_size_input, industry_risk_input, past_incidents_input, security_measures_input, compliance_input]])
57
+ predicted_premium = model.predict(input_data)[0]
58
+ st.subheader(f"Estimated Premium: ${predicted_premium:,.2f}")
59
+
60
+ st.subheader("Feature Importance")
61
+ st.write(coefficients)