import gradio as gr from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load pretrained GPT-2 model and tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("gpt2") # Function to generate script def generate_script(title): # Add a context prompt to the title prompt = "Title: " + title + "\n\nScript:" # Tokenize the prompt input_ids = tokenizer.encode(prompt, return_tensors="pt", max_length=1024, truncation=True) # Generate text based on the prompt output = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.7) # Decode generated text and return script = tokenizer.decode(output[0], skip_special_tokens=True) return script # Create Gradio interface title_input = gr.inputs.Textbox(lines=2, label="Enter Title") script_output = gr.outputs.Textbox(label="Generated Script") gr.Interface(generate_script, title_input, script_output, title="Script Generator", description="Generate a script based on the provided title.").launch()