Arrcttacsrks commited on
Commit
113d71f
·
verified ·
1 Parent(s): e3dfb9c

Upload llama.cpp/ggml/src/ggml-cuda/sumrows.cu with huggingface_hub

Browse files
llama.cpp/ggml/src/ggml-cuda/sumrows.cu ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "sumrows.cuh"
2
+
3
+ static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
4
+ const int row = blockIdx.x;
5
+ const int col = threadIdx.x;
6
+
7
+ float sum = 0.0f;
8
+ for (int i = col; i < ncols; i += blockDim.x) {
9
+ sum += x[row * ncols + i];
10
+ }
11
+
12
+ sum = warp_reduce_sum(sum);
13
+
14
+ if (col == 0) {
15
+ dst[row] = sum;
16
+ }
17
+ }
18
+
19
+ void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
20
+ const dim3 block_dims(WARP_SIZE, 1, 1);
21
+ const dim3 block_nums(nrows, 1, 1);
22
+ k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
23
+ }
24
+
25
+ void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
26
+ const ggml_tensor * src0 = dst->src[0];
27
+ const float * src0_d = (const float *)src0->data;
28
+ float * dst_d = (float *)dst->data;
29
+ cudaStream_t stream = ctx.stream();
30
+
31
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
32
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
33
+ GGML_ASSERT(ggml_is_contiguous(src0));
34
+
35
+ const int64_t ncols = src0->ne[0];
36
+ const int64_t nrows = ggml_nrows(src0);
37
+
38
+ sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
39
+ }