File size: 8,921 Bytes
f6dcb1f
3778796
f6dcb1f
 
71e45d9
 
 
65c7b42
4e763f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e45d9
 
 
4e763f3
 
71e45d9
 
4e763f3
 
 
 
 
65c7b42
4e763f3
 
 
 
65c7b42
4e763f3
71e45d9
5a1461e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e763f3
 
 
65c7b42
4e763f3
 
 
65c7b42
 
 
 
 
 
4e763f3
65c7b42
 
 
 
5a1461e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3778796
4e763f3
 
71e45d9
4e763f3
 
71e45d9
 
3778796
71e45d9
38c5500
4e763f3
 
 
 
3778796
4e763f3
 
71e45d9
df27c04
 
 
4e763f3
 
71e45d9
 
4e763f3
 
 
71e45d9
3778796
71e45d9
3778796
 
65c7b42
df27c04
3778796
 
71e45d9
 
 
 
 
 
65c7b42
3778796
 
 
 
 
71e45d9
 
 
4e763f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e45d9
 
 
 
 
 
 
 
 
4e763f3
71e45d9
4e763f3
 
 
 
 
71e45d9
3778796
71e45d9
 
 
 
4e763f3
71e45d9
4e763f3
 
 
 
 
 
 
 
 
 
 
f6dcb1f
 
1414db8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import gradio as gr
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
import textwrap
import os
import matplotlib
import math
import tempfile
from pathlib import Path

COMMON_FONTS = [
    "Times New Roman",
    "Arial",
    "Calibri",
    "Helvetica",
    "Verdana",
    "Tahoma",
    "Georgia",
    "Roboto",
    "Open Sans",
    "Segoe UI"
]

def get_system_fonts():
    fonts = []
    common_fonts_found = []
    
    for font in matplotlib.font_manager.findSystemFonts(fontpaths=None, fontext='ttf'):
        font_name = os.path.basename(font)
        actual_name = matplotlib.font_manager.FontProperties(fname=font).get_name()
        
        if any(common_font.lower() in actual_name.lower() for common_font in COMMON_FONTS):
            common_fonts_found.append((font_name, font))
        fonts.append((font_name, font))
    
    sorted_fonts = sorted(common_fonts_found, key=lambda x: COMMON_FONTS.index(
        next(cf for cf in COMMON_FONTS if cf.lower() in matplotlib.font_manager.FontProperties(fname=x[1]).get_name().lower())
    ))
    sorted_fonts.extend([(f[0], f[1]) for f in fonts if f not in common_fonts_found])
    
    return [f[0] for f in sorted_fonts], {f[0]: f[1] for f in sorted_fonts}

def parse_color(color):
    if isinstance(color, str) and color.startswith('rgba'):
        color = color.replace('rgba', '').strip('()').split(',')
        return tuple(int(float(c.strip())) for c in color[:3])
    return color

def calculate_text_dimensions(text, font, max_width, margin):
    lines = []
    for line in text.split('\n'):
        lines.extend(textwrap.wrap(line, width=int(max_width / font.size * 1.8)))
    
    bbox = font.getbbox('Ay')
    line_height = bbox[3] - bbox[1]
    total_height = line_height * len(lines)
    
    return lines, line_height, total_height

def create_text_segment(lines, start_idx, max_lines, width, height, bg_color, text_color, font, align, margin):
    img = Image.new("RGB", (width, height), color=bg_color)
    draw = ImageDraw.Draw(img)
    
    bbox = font.getbbox('Ay')
    line_height = bbox[3] - bbox[1]
    
    y = margin
    end_idx = min(start_idx + max_lines, len(lines))
    segment_lines = lines[start_idx:end_idx]
    
    for line in segment_lines:
        bbox = font.getbbox(line)
        line_width = bbox[2] - bbox[0]
        
        if align == 'Left':
            x = margin
        elif align == 'Center':
            x = (width - line_width) // 2
        else:  # Right alignment
            x = width - line_width - margin
            
        draw.text((x, y), line, fill=text_color, font=font)
        y += line_height
    
    return img, end_idx

def save_image_to_file(img, format="PNG"):
    temp_dir = Path(tempfile.gettempdir())
    temp_file = temp_dir / f"text_image.{format.lower()}"
    
    img.save(temp_file, format=format)
    return str(temp_file)

def render_plain_text_image(text, font_size, width, height, bg_color, text_color, font_name, align):
    bg_color = parse_color(bg_color)
    text_color = parse_color(text_color)
    margin = 10

    try:
        font_path = FONT_PATHS.get(font_name, font_name)
        font = ImageFont.truetype(font_path, font_size)
    except Exception:
        font = ImageFont.load_default()

    max_width = width - 2 * margin
    lines, line_height, total_text_height = calculate_text_dimensions(text, font, max_width, margin)
    
    max_lines_per_segment = (height - 2 * margin) // line_height
    num_segments = math.ceil(len(lines) / max_lines_per_segment)
    
    segments = []
    current_line = 0
    
    for i in range(num_segments):
        segment_img, current_line = create_text_segment(
            lines, current_line, max_lines_per_segment,
            width, height, bg_color, text_color, font, align, margin
        )
        segments.append(segment_img)
    
    total_height = len(segments) * height
    final_image = Image.new("RGB", (width, total_height), color=bg_color)
    
    for i, segment in enumerate(segments):
        final_image.paste(segment, (0, i * height))
    
    return final_image

def render_math_image(text, font_size, width, height, bg_color, text_color):
    bg_color = parse_color(bg_color)
    text_color = parse_color(text_color)

    fig, ax = plt.subplots(figsize=(width / 100, height / 100), facecolor=bg_color)
    ax.set_facecolor(bg_color)
    ax.axis('off')

    if not (text.startswith(r"$") and text.endswith(r"$")):
        text = rf"${text}$"

    ax.text(0.5, 0.5, text, fontsize=font_size, ha='center', va='center', color=text_color)

    buf = BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
    plt.close(fig)

    buf.seek(0)
    img = Image.open(buf)
    return img

def text_to_image(input_text, font_size, width, height, bg_color, text_color, 
                 mode, font_name, align, image_format, preview_mode):
    if mode == "Plain Text":
        img = render_plain_text_image(input_text, font_size, width, height, 
                                    bg_color, text_color, font_name, align)
    elif mode == "LaTeX Math":
        img = render_math_image(input_text, font_size, width, height, bg_color, text_color)
    else:
        return "Invalid mode selected!"
    
    if preview_mode:
        return img
    else:
        return save_image_to_file(img, image_format)

def handle_file_upload(file, font_size, width, height, bg_color, text_color, 
                      mode, font_name, align, image_format, preview_mode):
    if file is not None:
        file_path = file[0]
        with open(file_path, "r", encoding="utf-8") as f:
            text = f.read()
        return text_to_image(text, font_size, width, height, bg_color, text_color, 
                           mode, font_name, align, image_format, preview_mode)
    return "No file uploaded!"

font_list, FONT_PATHS = get_system_fonts()
default_font = next((f for f in font_list if "times" in f.lower() 
                    or "arial" in f.lower()), font_list[0])

with gr.Blocks() as demo:
    gr.Markdown("# 🖼️ Text to Image Converter")

    with gr.Row():
        input_text = gr.Textbox(label="Enter Text", placeholder="Type or paste text here...", lines=5)
        file_input = gr.File(label="Upload a Text File", type="filepath")

    with gr.Row():
        font_size = gr.Slider(10, 100, value=30, label="Font Size")
        font_name = gr.Dropdown(choices=font_list, value=default_font, label="Font")
        align = gr.Radio(["Left", "Center", "Right"], label="Text Alignment", value="Center")

    with gr.Row():
        width = gr.Slider(200, 2000, value=800, label="Image Width")
        height = gr.Slider(200, 2000, value=600, label="Base Height")

    with gr.Row():
        bg_color = gr.ColorPicker(label="Background Color", value="#FFFFFF")
        text_color = gr.ColorPicker(label="Text Color", value="#000000")

    with gr.Row():
        mode = gr.Radio(["Plain Text", "LaTeX Math"], label="Rendering Mode", value="Plain Text")
        image_format = gr.Radio(["PNG", "JPEG"], label="Image Format", value="PNG")
        preview_mode = gr.Checkbox(label="Preview Mode", value=True, 
                                 info="Uncheck to get download link instead of preview")

    output = gr.Variable()
    preview_image = gr.Image(label="Preview", visible=True)
    download_link = gr.File(label="Download Image", visible=False)

    def update_output(result, preview_mode):
        if preview_mode:
            return {
                preview_image: result,
                download_link: gr.update(visible=False),
                preview_image: gr.update(visible=True)
            }
        else:
            return {
                download_link: result,
                preview_image: gr.update(visible=False),
                download_link: gr.update(visible=True)
            }

    with gr.Row():
        convert_button = gr.Button("Convert Text to Image")
        file_convert_button = gr.Button("Convert File to Image")

    convert_button.click(
        text_to_image,
        inputs=[
            input_text, font_size, width, height, bg_color, text_color,
            mode, font_name, align, image_format, preview_mode
        ],
        outputs=[output]
    ).then(
        update_output,
        inputs=[output, preview_mode],
        outputs=[preview_image, download_link]
    )

    file_convert_button.click(
        handle_file_upload,
        inputs=[
            file_input, font_size, width, height, bg_color, text_color,
            mode, font_name, align, image_format, preview_mode
        ],
        outputs=[output]
    ).then(
        update_output,
        inputs=[output, preview_mode],
        outputs=[preview_image, download_link]
    )

    preview_mode.change(
        update_output,
        inputs=[output, preview_mode],
        outputs=[preview_image, download_link]
    )

demo.launch()