Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
DESCRIPTION = """\ | |
# L-MChat | |
This Space demonstrates [L-MChat](https://huggingface.co/collections/Artples/l-mchat-663265a8351231c428318a8f) by L-AI. | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU! This demo does not work on CPU.</p>" | |
model_details = { | |
"Fast-Model": "Artples/L-MChat-Small", | |
"Quality-Model": "Artples/L-MChat-7b" | |
} | |
models = {name: AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") for name, model_id in model_details.items()} | |
tokenizers = {name: AutoTokenizer.from_pretrained(model_id) for name, model_id in model_details.items()} | |
def generate( | |
model_choice: str, | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.1, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> str: | |
model = models[model_choice] | |
tokenizer = tokenizers[model_choice] | |
conversation = [{"role": "system", "content": system_prompt}] if system_prompt else [] | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}] for user, assistant in chat_history) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer(conversation, return_tensors="pt", truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).input_ids | |
input_ids = input_ids.to(model.device) | |
output_ids = model.generate(input_ids, max_length=MAX_INPUT_TOKEN_LENGTH + max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty) | |
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
return output_text | |
chat_interface = gr.ChatInterface( | |
theme='ehristoforu/RE_Theme', | |
fn=generate, | |
additional_inputs=[gr.Textbox(label="System prompt", lines=6), gr.Dropdown(label="Model Choice", choices=list(model_details.keys()), value="Quality-Model")], | |
examples=[ | |
["Hello there! How are you doing?"], | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Explain the plot of Cinderella in a sentence."], | |
["How many hours does it take a man to eat a Helicopter?"], | |
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
chat_interface.render() | |
if __name__ == "__main__": | |
demo.launch() | |