GAIA_Agent / app.py
ArturoNereu's picture
answer caching implemented 1 by 1 basis
acd2047
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
from datasets import Dataset
from huggingface_hub import HfApi
from gaia_agent import GaiaAgent
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# To check if we are running locally
running_on_hf = bool(os.getenv("SPACE_ID") or os.getenv("SPACE_HOST"))
# Questions the agent can reliably solve (no images, audio, video)
SOLVABLE_INDICES = [0, 2, 4] # Mercedes Sosa, Reversed text, Dinosaur Featured Article
def get_dataset_name():
"""Get the private dataset name for this space"""
space_id = os.getenv("SPACE_ID")
if space_id:
# Replace invalid characters for HF dataset names
clean_name = space_id.replace('/', '_').replace('-', '_')
return f"{clean_name}_gaia_answers"
return "gaia_answers_cache"
def load_answers_cache():
"""Load cached answers from local file (fallback from HF Dataset due to auth issues)"""
try:
cache_file = "verified_answers.json"
if os.path.exists(cache_file):
with open(cache_file, 'r') as f:
cache = json.load(f)
print(f"✅ Loaded {len(cache)} cached answers from local file")
return cache
except Exception as e:
print(f"📝 No existing cache found: {e}")
return {}
def save_answers_cache(cache, token=None):
"""Save cached answers to local file (fallback from HF Dataset due to auth issues)"""
if not cache:
return False
try:
cache_file = "verified_answers.json"
with open(cache_file, 'w') as f:
json.dump(cache, f, indent=2)
print(f"💾 Saved {len(cache)} answers to local file: {cache_file}")
# Try to commit to git if in HF Spaces
if running_on_hf:
try:
import subprocess
subprocess.run(["git", "add", cache_file], check=True)
subprocess.run(["git", "commit", "-m", f"Cache {len(cache)} verified answers"], check=True)
print("📝 Committed cache to repository")
except Exception as git_error:
print(f"⚠️ Could not commit to git: {git_error}")
return True
except Exception as e:
print(f"Error saving cache: {e}")
return False
def check_answers_correctness(answers_payload, questions_data):
"""
Submit answers to get correctness feedback and return which ones were correct
"""
if not running_on_hf:
return {}
try:
# Prepare minimal submission for validation
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
submission_data = {
"username": "validation_check",
"agent_code": agent_code,
"answers": answers_payload
}
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
print(f"📊 Validation API response: {result_data}")
# Parse which answers were correct
correct_answers = {}
# Try different response formats
if "detailed_results" in result_data:
for result in result_data["detailed_results"]:
if result.get("correct", False):
task_id = result.get("task_id")
for answer in answers_payload:
if answer["task_id"] == task_id:
correct_answers[task_id] = answer["submitted_answer"]
break
elif "results" in result_data:
for result in result_data["results"]:
if result.get("correct", False):
task_id = result.get("task_id")
for answer in answers_payload:
if answer["task_id"] == task_id:
correct_answers[task_id] = answer["submitted_answer"]
break
else:
# Try to infer from score and correct_count
correct_count = result_data.get("correct_count", 0)
total_count = len(answers_payload)
print(f"📈 Got {correct_count}/{total_count} correct, but no detailed breakdown")
# If we can't get detailed results, we'll need to use a different approach
# For now, return empty dict to avoid caching potentially wrong answers
print(f"✅ Found {len(correct_answers)} correct answers: {list(correct_answers.keys())}")
return correct_answers
except Exception as e:
print(f"❌ Error checking answer correctness: {e}")
return {}
def manually_cache_answer(task_id: str, answer: str):
"""
Manually add a verified correct answer to the cache
"""
if not running_on_hf:
return "Manual caching only available on HuggingFace Spaces"
try:
cache = load_answers_cache()
cache[task_id] = answer
if save_answers_cache(cache):
return f"✅ Manually cached answer for {task_id}: {answer}"
else:
return f"❌ Failed to save manual cache"
except Exception as e:
return f"❌ Error in manual caching: {e}"
def run_and_cache_answers(profile: gr.OAuthProfile | None):
"""
Runs agent on questions, validates answers, and caches only correct ones
"""
if not running_on_hf:
return "Caching only available on HuggingFace Spaces", None
username = f"{profile.username}" if profile else "unknown_user"
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
# 1. Instantiate Agent
try:
agent = GaiaAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
# 2. Fetch Questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# 3. Load existing cache (verified correct answers)
cache = load_answers_cache()
# 4. Run agent only on unsolved questions
results_log = []
new_answers_payload = []
for idx in SOLVABLE_INDICES:
if idx >= len(questions_data):
continue
item = questions_data[idx]
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
# Skip if already have correct answer cached
if task_id in cache:
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": cache[task_id],
"Status": "✅ CORRECT (CACHED)"
})
continue
try:
print(f"Processing question {idx+1}: {question_text[:100]}...")
submitted_answer = agent(question_text)
# Add to payload for validation
new_answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": submitted_answer,
"Status": "🔄 VALIDATING..."
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": f"ERROR: {e}",
"Status": "❌ FAILED"
})
# 5. Validate new answers one by one and cache only correct ones
if new_answers_payload:
print(f"🔍 Validating {len(new_answers_payload)} answers one by one...")
correct_answers = {}
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
for answer in new_answers_payload:
try:
# Test this answer alone
single_submission = {
"username": f"test_{answer['task_id'][:8]}",
"agent_code": agent_code,
"answers": [answer]
}
print(f"Testing: {answer['submitted_answer']}")
response = requests.post(submit_url, json=single_submission, timeout=30)
response.raise_for_status()
result_data = response.json()
correct_count = result_data.get("correct_count", 0)
if correct_count > 0:
print(f"✅ CORRECT: {answer['submitted_answer']}")
correct_answers[answer['task_id']] = answer['submitted_answer']
else:
print(f"❌ WRONG: {answer['submitted_answer']}")
except Exception as e:
print(f"⚠️ Error testing {answer['submitted_answer']}: {e}")
# Update cache with only correct answers
cache.update(correct_answers)
# Update results log with validation results
for log_entry in results_log:
if log_entry["Status"] == "🔄 VALIDATING...":
task_id = log_entry["Task ID"]
if task_id in correct_answers:
log_entry["Status"] = "✅ CORRECT (NEW)"
else:
log_entry["Status"] = "❌ INCORRECT"
# Save updated cache
if correct_answers:
save_answers_cache(cache)
status = f"🎉 Validated {len(new_answers_payload)} answers. Cached {len(correct_answers)} correct answers!"
else:
status = f"😔 Validated {len(new_answers_payload)} answers. None were correct this time."
else:
status = "All target questions already have correct answers cached!"
return status, pd.DataFrame(results_log)
def run_and_show_answers(profile: gr.OAuthProfile | None):
"""
Runs agent on questions and shows results without auto-validation (for manual review)
"""
if not running_on_hf:
return "This function only available on HuggingFace Spaces", None
username = f"{profile.username}" if profile else "unknown_user"
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
# 1. Instantiate Agent
try:
agent = GaiaAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
# 2. Fetch Questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# 3. Load existing cache
cache = load_answers_cache()
# 4. Run agent on all target questions
results_log = []
for idx in SOLVABLE_INDICES:
if idx >= len(questions_data):
continue
item = questions_data[idx]
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
# Check if already cached
if task_id in cache:
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": cache[task_id],
"Status": "✅ CACHED"
})
continue
try:
print(f"Processing question {idx+1}: {question_text[:100]}...")
submitted_answer = agent(question_text)
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": submitted_answer,
"Status": "🔍 REVIEW NEEDED"
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": f"ERROR: {e}",
"Status": "❌ FAILED"
})
status = (
f"📋 Generated answers for manual review.\n"
f"If an answer looks correct, you can manually cache it.\n"
f"Known correct answers:\n"
f"- Reversed text question: should be 'right'\n"
f"- Mercedes Sosa albums: try different numbers if needed\n"
f"- Dinosaur Featured Article: check nomination info"
)
return status, pd.DataFrame(results_log)
def submit_cached_answers(profile: gr.OAuthProfile | None):
"""
Submits all cached answers
"""
if not running_on_hf:
return "Submission only available on HuggingFace Spaces", None
if not profile:
return "Please login to submit answers", None
username = f"{profile.username}"
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Load cache
cache = load_answers_cache()
if not cache:
return "No cached answers found", None
print(f"📤 Preparing to submit {len(cache)} cached answers:")
for task_id, answer in cache.items():
print(f" {task_id[:8]}... = {answer}")
# Prepare submission - ensure answers are strings
answers_payload = []
for task_id, answer in cache.items():
answers_payload.append({
"task_id": str(task_id),
"submitted_answer": str(answer)
})
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"📡 Submitting as user: {username}")
print(f"🔗 Agent code: {agent_code}")
# Submit
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
print(f"📊 Response status: {response.status_code}")
response.raise_for_status()
result_data = response.json()
print(f"📈 API Response: {result_data}")
final_status = (
f"🎉 Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Submitted {len(answers_payload)} cached answers\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
# Show cached answers for reference
results_log = [{"Task ID": task_id, "Cached Answer": answer, "Status": "✅ SUBMITTED"}
for task_id, answer in cache.items()]
return final_status, pd.DataFrame(results_log)
except requests.exceptions.HTTPError as http_err:
error_detail = f"HTTP {response.status_code}: {response.text}"
return f"❌ Submission Failed: {error_detail}", pd.DataFrame([{"Task ID": task_id, "Cached Answer": answer, "Status": "❌ FAILED"}
for task_id, answer in cache.items()])
except Exception as e:
return f"❌ Submission Failed: {e}", pd.DataFrame([{"Task ID": task_id, "Cached Answer": answer, "Status": "❌ FAILED"}
for task_id, answer in cache.items()])
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if running_on_hf:
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
else:
username = "local_user"
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = GaiaAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(SOLVABLE_INDICES)} solvable questions...")
for idx in SOLVABLE_INDICES:
if idx >= len(questions_data):
continue
item = questions_data[idx]
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
print(f"Processing question {idx+1}: {question_text[:100]}...")
submitted_answer = agent(question_text)
print(f"Answer for question {idx+1}: {submitted_answer}")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text[:150] + "..." if len(question_text) > 150 else question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text[:150] + "..." if len(question_text) > 150 else question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
if running_on_hf:
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
else:
print(f"Agent finished locally on {len(answers_payload)} questions (not submitted).")
results_df = pd.DataFrame(results_log)
return f"Ran locally as '{username}', results below (no submission).", results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent")
gr.Image(value="assets/AI_Programmer.png")
gr.Markdown("An agent using smolagents to solve the GAIA Benchmark. By @ArturoNereu")
if running_on_hf:
gr.LoginButton()
with gr.Row():
review_button = gr.Button("Run & Review Answers")
cache_button = gr.Button("Run & Auto-Cache Correct")
submit_cache_button = gr.Button("Submit Cached Answers")
with gr.Row():
run_button = gr.Button("Run & Submit All (Direct)")
# Manual caching section
gr.Markdown("### Manual Answer Caching")
with gr.Row():
task_id_input = gr.Textbox(label="Task ID", placeholder="e.g., 2d83110e-a098-4ebb-9987-066c06fa42d0")
answer_input = gr.Textbox(label="Correct Answer", placeholder="e.g., right")
manual_cache_button = gr.Button("Cache This Answer")
else:
run_button = gr.Button("Run Evaluation (Local)")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
if running_on_hf:
review_button.click(
fn=run_and_show_answers,
outputs=[status_output, results_table]
)
cache_button.click(
fn=run_and_cache_answers,
outputs=[status_output, results_table]
)
submit_cache_button.click(
fn=submit_cached_answers,
outputs=[status_output, results_table]
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
manual_cache_button.click(
fn=lambda task_id, answer: (manually_cache_answer(task_id, answer), None),
inputs=[task_id_input, answer_input],
outputs=[status_output, results_table]
)
else:
run_button.click(
fn=lambda: run_and_submit_all(None),
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)