File size: 2,208 Bytes
2aa301a
 
 
 
 
478fbc7
2aa301a
478fbc7
2aa301a
478fbc7
 
2aa301a
5752949
7fc5388
2aa301a
 
 
 
478fbc7
 
5752949
 
 
478fbc7
 
2aa301a
 
 
7fc5388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aa301a
 
7fc5388
5752949
 
2aa301a
 
7fc5388
2aa301a
7fc5388
 
2aa301a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import gradio as gr
import numpy as np
import torch
from PIL import Image
import cv2
import requests

from transformers import pipeline

# Load the depth estimation pipeline
pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Small-hf")


def apply_depth_aware_blur(image):  # Removed blur parameters
    original_image = Image.fromarray(image).convert("RGB")
    original_image = original_image.resize((512, 512))
    image_np = np.array(original_image)

    # Inference
    depth = pipe(original_image)["depth"]
    depth = np.array(depth)  # Convert to numpy array
    depth = cv2.resize(depth, (512, 512), interpolation=cv2.INTER_CUBIC)  # Resize depth map

    # Normalize the depth map
    normalized_depth_map = (depth - np.min(depth)) / (np.max(depth) - np.min(depth))

    blurred_image = np.copy(np.array(original_image))

    # Calculate blur kernel size based on depth
    max_kernel_size = 35  # Maximum blur kernel size
    for y in range(512):
        for x in range(512):
            blur_amount = normalized_depth_map[y, x]
            kernel_size = int(blur_amount * max_kernel_size)
            # Ensure kernel size is odd and at least 1
            kernel_size = max(1, kernel_size)
            if kernel_size % 2 == 0:
                kernel_size += 1

            if kernel_size > 1 and kernel_size <= max_kernel_size:
                blurred_image[y:y + 1, x:x + 1] = cv2.GaussianBlur(
                    np.array(original_image)[y:y + 1, x:x + 1], (kernel_size, kernel_size), 10
                )
            else:
                blurred_image[y:y + 1, x:x + 1] = np.array(original_image)[y:y + 1, x:x + 1] #Keep original pixel


    return Image.fromarray(blurred_image.astype(np.uint8))


iface = gr.Interface(
    fn=apply_depth_aware_blur,
    inputs=gr.Image(label="Input Image"),
    outputs=gr.Image(label="Blurred Image"),
    title="Depth-Proportional Lens Blur App",
    description="Apply blur to an image where the blur intensity is proportional to the estimated depth. Farther objects are more blurred, closer objects are sharper.",
)

if __name__ == "__main__":
    iface.launch()