Update test.py
Browse files
test.py
CHANGED
|
@@ -25,7 +25,7 @@ from datasets import load_dataset
|
|
| 25 |
import tempfile
|
| 26 |
|
| 27 |
st.title("SQL-RAG Using CrewAI π")
|
| 28 |
-
st.write("Analyze datasets using natural language queries
|
| 29 |
|
| 30 |
# Initialize LLM
|
| 31 |
llm = None
|
|
@@ -86,88 +86,348 @@ if st.session_state.df is not None and st.session_state.show_preview:
|
|
| 86 |
st.subheader("π Dataset Preview")
|
| 87 |
st.dataframe(st.session_state.df.head())
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
def escape_markdown(text):
|
| 173 |
# Ensure text is a string
|
|
@@ -301,27 +561,11 @@ if st.session_state.df is not None:
|
|
| 301 |
st.markdown(report_result if report_result else "β οΈ No Report Generated.")
|
| 302 |
|
| 303 |
# Step 4: Generate Visualizations
|
| 304 |
-
visualizations = []
|
| 305 |
-
|
| 306 |
-
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
|
| 307 |
-
title="Salary Distribution by Job Title")
|
| 308 |
-
visualizations.append(fig_salary)
|
| 309 |
|
| 310 |
-
fig_experience = px.bar(
|
| 311 |
-
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
| 312 |
-
x="experience_level", y="salary_in_usd",
|
| 313 |
-
title="Average Salary by Experience Level"
|
| 314 |
-
)
|
| 315 |
-
visualizations.append(fig_experience)
|
| 316 |
-
|
| 317 |
-
fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
| 318 |
-
title="Salary Distribution by Employment Type")
|
| 319 |
-
visualizations.append(fig_employment)
|
| 320 |
|
| 321 |
# Step 5: Insert Visual Insights
|
| 322 |
st.markdown("### Visual Insights")
|
| 323 |
-
|
| 324 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 325 |
|
| 326 |
# Step 6: Display Concise Conclusion
|
| 327 |
#st.markdown("#### Conclusion")
|
|
@@ -329,31 +573,8 @@ if st.session_state.df is not None:
|
|
| 329 |
safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
|
| 330 |
st.markdown(safe_conclusion)
|
| 331 |
|
| 332 |
-
# Full Data Visualization Tab
|
| 333 |
-
with tab2:
|
| 334 |
-
st.subheader("π Comprehensive Data Visualizations")
|
| 335 |
-
|
| 336 |
-
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
| 337 |
-
st.plotly_chart(fig1)
|
| 338 |
-
|
| 339 |
-
fig2 = px.bar(
|
| 340 |
-
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
| 341 |
-
x="experience_level", y="salary_in_usd",
|
| 342 |
-
title="Average Salary by Experience Level"
|
| 343 |
-
)
|
| 344 |
-
st.plotly_chart(fig2)
|
| 345 |
-
|
| 346 |
-
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
| 347 |
-
title="Salary Distribution by Employment Type")
|
| 348 |
-
st.plotly_chart(fig3)
|
| 349 |
-
|
| 350 |
-
temp_dir.cleanup()
|
| 351 |
-
else:
|
| 352 |
-
st.info("Please load a dataset to proceed.")
|
| 353 |
-
|
| 354 |
|
| 355 |
# Sidebar Reference
|
| 356 |
with st.sidebar:
|
| 357 |
st.header("π Reference:")
|
| 358 |
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|
| 359 |
-
|
|
|
|
| 25 |
import tempfile
|
| 26 |
|
| 27 |
st.title("SQL-RAG Using CrewAI π")
|
| 28 |
+
st.write("Analyze datasets using natural language queries.")
|
| 29 |
|
| 30 |
# Initialize LLM
|
| 31 |
llm = None
|
|
|
|
| 86 |
st.subheader("π Dataset Preview")
|
| 87 |
st.dataframe(st.session_state.df.head())
|
| 88 |
|
| 89 |
+
|
| 90 |
+
# Helper Function for Validation
|
| 91 |
+
def is_valid_suggestion(suggestion):
|
| 92 |
+
chart_type = suggestion.get("chart_type", "").lower()
|
| 93 |
+
|
| 94 |
+
if chart_type in ["bar", "line", "box", "scatter"]:
|
| 95 |
+
return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"])
|
| 96 |
+
|
| 97 |
+
elif chart_type == "pie":
|
| 98 |
+
return all(k in suggestion for k in ["chart_type", "x_axis"])
|
| 99 |
+
|
| 100 |
+
elif chart_type == "heatmap":
|
| 101 |
+
return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"])
|
| 102 |
+
|
| 103 |
+
else:
|
| 104 |
+
return False
|
| 105 |
+
|
| 106 |
+
def ask_gpt4o_for_visualization(query, df, llm, retries=2):
|
| 107 |
+
import json
|
| 108 |
+
|
| 109 |
+
# Identify numeric and categorical columns
|
| 110 |
+
numeric_columns = df.select_dtypes(include='number').columns.tolist()
|
| 111 |
+
categorical_columns = df.select_dtypes(exclude='number').columns.tolist()
|
| 112 |
+
|
| 113 |
+
# Prompt with Dataset-Specific, Query-Based Examples
|
| 114 |
+
prompt = f"""
|
| 115 |
+
Analyze the following query and suggest the most suitable visualization(s) using the dataset.
|
| 116 |
+
**Query:** "{query}"
|
| 117 |
+
**Dataset Overview:**
|
| 118 |
+
- **Numeric Columns (for Y-axis):** {', '.join(numeric_columns) if numeric_columns else 'None'}
|
| 119 |
+
- **Categorical Columns (for X-axis or grouping):** {', '.join(categorical_columns) if categorical_columns else 'None'}
|
| 120 |
+
Suggest visualizations in this exact JSON format:
|
| 121 |
+
[
|
| 122 |
+
{{
|
| 123 |
+
"chdart_type": "bar/box/line/scatter/pie/heatmap",
|
| 124 |
+
"x_axis": "categorical_or_time_column",
|
| 125 |
+
"y_axis": "numeric_column",
|
| 126 |
+
"group_by": "optional_column_for_grouping",
|
| 127 |
+
"title": "Title of the chart",
|
| 128 |
+
"description": "Why this chart is suitable"
|
| 129 |
+
}}
|
| 130 |
+
]
|
| 131 |
+
**Query-Based Examples:**
|
| 132 |
+
- **Query:** "What is the salary distribution across different job titles?"
|
| 133 |
+
**Suggested Visualization:**
|
| 134 |
+
{{
|
| 135 |
+
"chart_type": "box",
|
| 136 |
+
"x_axis": "job_title",
|
| 137 |
+
"y_axis": "salary_in_usd",
|
| 138 |
+
"group_by": "experience_level",
|
| 139 |
+
"title": "Salary Distribution by Job Title and Experience",
|
| 140 |
+
"description": "A box plot to show how salaries vary across different job titles and experience levels."
|
| 141 |
+
}}
|
| 142 |
+
- **Query:** "Show the average salary by company size and employment type."
|
| 143 |
+
**Suggested Visualizations:**
|
| 144 |
+
[
|
| 145 |
+
{{
|
| 146 |
+
"chart_type": "bar",
|
| 147 |
+
"x_axis": "company_size",
|
| 148 |
+
"y_axis": "salary_in_usd",
|
| 149 |
+
"group_by": "employment_type",
|
| 150 |
+
"title": "Average Salary by Company Size and Employment Type",
|
| 151 |
+
"description": "A grouped bar chart comparing average salaries across company sizes and employment types."
|
| 152 |
+
}},
|
| 153 |
+
{{
|
| 154 |
+
"chart_type": "heatmap",
|
| 155 |
+
"x_axis": "company_size",
|
| 156 |
+
"y_axis": "salary_in_usd",
|
| 157 |
+
"group_by": "employment_type",
|
| 158 |
+
"title": "Salary Heatmap by Company Size and Employment Type",
|
| 159 |
+
"description": "A heatmap showing salary concentration across company sizes and employment types."
|
| 160 |
+
}}
|
| 161 |
+
]
|
| 162 |
+
- **Query:** "How has the average salary changed over the years?"
|
| 163 |
+
**Suggested Visualization:**
|
| 164 |
+
{{
|
| 165 |
+
"chart_type": "line",
|
| 166 |
+
"x_axis": "work_year",
|
| 167 |
+
"y_axis": "salary_in_usd",
|
| 168 |
+
"group_by": "experience_level",
|
| 169 |
+
"title": "Average Salary Trend Over Years",
|
| 170 |
+
"description": "A line chart showing how the average salary has changed across different experience levels over the years."
|
| 171 |
+
}}
|
| 172 |
+
- **Query:** "What is the employee distribution by company location?"
|
| 173 |
+
**Suggested Visualization:**
|
| 174 |
+
{{
|
| 175 |
+
"chart_type": "pie",
|
| 176 |
+
"x_axis": "company_location",
|
| 177 |
+
"y_axis": null,
|
| 178 |
+
"group_by": null,
|
| 179 |
+
"title": "Employee Distribution by Company Location",
|
| 180 |
+
"description": "A pie chart showing the distribution of employees across company locations."
|
| 181 |
+
}}
|
| 182 |
+
- **Query:** "Is there a relationship between remote work ratio and salary?"
|
| 183 |
+
**Suggested Visualization:**
|
| 184 |
+
{{
|
| 185 |
+
"chart_type": "scatter",
|
| 186 |
+
"x_axis": "remote_ratio",
|
| 187 |
+
"y_axis": "salary_in_usd",
|
| 188 |
+
"group_by": "experience_level",
|
| 189 |
+
"title": "Remote Work Ratio vs Salary",
|
| 190 |
+
"description": "A scatter plot to analyze the relationship between remote work ratio and salary."
|
| 191 |
+
}}
|
| 192 |
+
- **Query:** "Which job titles have the highest salaries across regions?"
|
| 193 |
+
**Suggested Visualization:**
|
| 194 |
+
{{
|
| 195 |
+
"chart_type": "heatmap",
|
| 196 |
+
"x_axis": "job_title",
|
| 197 |
+
"y_axis": "employee_residence",
|
| 198 |
+
"group_by": null,
|
| 199 |
+
"title": "Salary Heatmap by Job Title and Region",
|
| 200 |
+
"description": "A heatmap showing the concentration of high-paying job titles across regions."
|
| 201 |
+
}}
|
| 202 |
+
Only suggest visualizations that logically match the query and dataset.
|
| 203 |
+
"""
|
| 204 |
+
|
| 205 |
+
for attempt in range(retries + 1):
|
| 206 |
+
try:
|
| 207 |
+
response = llm.generate(prompt)
|
| 208 |
+
suggestions = json.loads(response)
|
| 209 |
+
|
| 210 |
+
if isinstance(suggestions, list):
|
| 211 |
+
valid_suggestions = [s for s in suggestions if is_valid_suggestion(s)]
|
| 212 |
+
if valid_suggestions:
|
| 213 |
+
return valid_suggestions
|
| 214 |
+
else:
|
| 215 |
+
st.warning("β οΈ GPT-4o did not suggest valid visualizations.")
|
| 216 |
+
return None
|
| 217 |
+
|
| 218 |
+
elif isinstance(suggestions, dict):
|
| 219 |
+
if is_valid_suggestion(suggestions):
|
| 220 |
+
return [suggestions]
|
| 221 |
+
else:
|
| 222 |
+
st.warning("β οΈ GPT-4o's suggestion is incomplete or invalid.")
|
| 223 |
+
return None
|
| 224 |
+
|
| 225 |
+
except json.JSONDecodeError:
|
| 226 |
+
st.warning(f"β οΈ Attempt {attempt + 1}: GPT-4o returned invalid JSON.")
|
| 227 |
+
except Exception as e:
|
| 228 |
+
st.error(f"β οΈ Error during GPT-4o call: {e}")
|
| 229 |
+
|
| 230 |
+
if attempt < retries:
|
| 231 |
+
st.info("π Retrying visualization suggestion...")
|
| 232 |
+
|
| 233 |
+
st.error("β Failed to generate a valid visualization after multiple attempts.")
|
| 234 |
+
return None
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def add_stats_to_figure(fig, df, y_axis, chart_type):
|
| 238 |
+
"""
|
| 239 |
+
Add relevant statistical annotations to the visualization
|
| 240 |
+
based on the chart type.
|
| 241 |
+
"""
|
| 242 |
+
# Check if the y-axis column is numeric
|
| 243 |
+
if not pd.api.types.is_numeric_dtype(df[y_axis]):
|
| 244 |
+
st.warning(f"β οΈ Cannot compute statistics for non-numeric column: {y_axis}")
|
| 245 |
+
return fig
|
| 246 |
+
|
| 247 |
+
# Compute statistics for numeric data
|
| 248 |
+
min_val = df[y_axis].min()
|
| 249 |
+
max_val = df[y_axis].max()
|
| 250 |
+
avg_val = df[y_axis].mean()
|
| 251 |
+
median_val = df[y_axis].median()
|
| 252 |
+
std_dev_val = df[y_axis].std()
|
| 253 |
+
|
| 254 |
+
# Format the stats for display
|
| 255 |
+
stats_text = (
|
| 256 |
+
f"π **Statistics**\n\n"
|
| 257 |
+
f"- **Min:** ${min_val:,.2f}\n"
|
| 258 |
+
f"- **Max:** ${max_val:,.2f}\n"
|
| 259 |
+
f"- **Average:** ${avg_val:,.2f}\n"
|
| 260 |
+
f"- **Median:** ${median_val:,.2f}\n"
|
| 261 |
+
f"- **Std Dev:** ${std_dev_val:,.2f}"
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# Apply stats only to relevant chart types
|
| 265 |
+
if chart_type in ["bar", "line"]:
|
| 266 |
+
# Add annotation box for bar and line charts
|
| 267 |
+
fig.add_annotation(
|
| 268 |
+
text=stats_text,
|
| 269 |
+
xref="paper", yref="paper",
|
| 270 |
+
x=1.02, y=1,
|
| 271 |
+
showarrow=False,
|
| 272 |
+
align="left",
|
| 273 |
+
font=dict(size=12, color="black"),
|
| 274 |
+
bordercolor="gray",
|
| 275 |
+
borderwidth=1,
|
| 276 |
+
bgcolor="rgba(255, 255, 255, 0.85)"
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
# Add horizontal reference lines
|
| 280 |
+
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right")
|
| 281 |
+
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right")
|
| 282 |
+
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right")
|
| 283 |
+
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right")
|
| 284 |
+
|
| 285 |
+
elif chart_type == "scatter":
|
| 286 |
+
# Add stats annotation only, no lines for scatter plots
|
| 287 |
+
fig.add_annotation(
|
| 288 |
+
text=stats_text,
|
| 289 |
+
xref="paper", yref="paper",
|
| 290 |
+
x=1.02, y=1,
|
| 291 |
+
showarrow=False,
|
| 292 |
+
align="left",
|
| 293 |
+
font=dict(size=12, color="black"),
|
| 294 |
+
bordercolor="gray",
|
| 295 |
+
borderwidth=1,
|
| 296 |
+
bgcolor="rgba(255, 255, 255, 0.85)"
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
elif chart_type == "box":
|
| 300 |
+
# Box plots inherently show distribution; no extra stats needed
|
| 301 |
+
pass
|
| 302 |
+
|
| 303 |
+
elif chart_type == "pie":
|
| 304 |
+
# Pie charts represent proportions, not suitable for stats
|
| 305 |
+
st.info("π Pie charts represent proportions. Additional stats are not applicable.")
|
| 306 |
+
|
| 307 |
+
elif chart_type == "heatmap":
|
| 308 |
+
# Heatmaps already reflect data intensity
|
| 309 |
+
st.info("π Heatmaps inherently reflect distribution. No additional stats added.")
|
| 310 |
+
|
| 311 |
+
else:
|
| 312 |
+
st.warning(f"β οΈ No statistical overlays applied for unsupported chart type: '{chart_type}'.")
|
| 313 |
+
|
| 314 |
+
return fig
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
# Dynamically generate Plotly visualizations based on GPT-4o suggestions
|
| 318 |
+
def generate_visualization(suggestion, df):
|
| 319 |
+
"""
|
| 320 |
+
Generate a Plotly visualization based on GPT-4o's suggestion.
|
| 321 |
+
If the Y-axis is missing, infer it intelligently.
|
| 322 |
+
"""
|
| 323 |
+
chart_type = suggestion.get("chart_type", "bar").lower()
|
| 324 |
+
x_axis = suggestion.get("x_axis")
|
| 325 |
+
y_axis = suggestion.get("y_axis")
|
| 326 |
+
group_by = suggestion.get("group_by")
|
| 327 |
+
|
| 328 |
+
# Step 1: Infer Y-axis if not provided
|
| 329 |
+
if not y_axis:
|
| 330 |
+
numeric_columns = df.select_dtypes(include='number').columns.tolist()
|
| 331 |
+
|
| 332 |
+
# Avoid using the same column for both axes
|
| 333 |
+
if x_axis in numeric_columns:
|
| 334 |
+
numeric_columns.remove(x_axis)
|
| 335 |
+
|
| 336 |
+
# Smart guess: prioritize salary or relevant metrics if available
|
| 337 |
+
priority_columns = ["salary_in_usd", "income", "earnings", "revenue"]
|
| 338 |
+
for col in priority_columns:
|
| 339 |
+
if col in numeric_columns:
|
| 340 |
+
y_axis = col
|
| 341 |
+
break
|
| 342 |
+
|
| 343 |
+
# Fallback to the first numeric column if no priority columns exist
|
| 344 |
+
if not y_axis and numeric_columns:
|
| 345 |
+
y_axis = numeric_columns[0]
|
| 346 |
+
|
| 347 |
+
# Step 2: Validate axes
|
| 348 |
+
if not x_axis or not y_axis:
|
| 349 |
+
st.warning("β οΈ Unable to determine appropriate columns for visualization.")
|
| 350 |
+
return None
|
| 351 |
+
|
| 352 |
+
# Step 3: Dynamically select the Plotly function
|
| 353 |
+
plotly_function = getattr(px, chart_type, None)
|
| 354 |
+
if not plotly_function:
|
| 355 |
+
st.warning(f"β οΈ Unsupported chart type '{chart_type}' suggested by GPT-4o.")
|
| 356 |
+
return None
|
| 357 |
+
|
| 358 |
+
# Step 4: Prepare dynamic plot arguments
|
| 359 |
+
plot_args = {"data_frame": df, "x": x_axis, "y": y_axis}
|
| 360 |
+
if group_by and group_by in df.columns:
|
| 361 |
+
plot_args["color"] = group_by
|
| 362 |
+
|
| 363 |
+
try:
|
| 364 |
+
# Step 5: Generate the visualization
|
| 365 |
+
fig = plotly_function(**plot_args)
|
| 366 |
+
fig.update_layout(
|
| 367 |
+
title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}",
|
| 368 |
+
xaxis_title=x_axis.replace('_', ' ').title(),
|
| 369 |
+
yaxis_title=y_axis.replace('_', ' ').title(),
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
# Step 6: Apply statistics intelligently
|
| 373 |
+
fig = add_statistics_to_visualization(fig, df, y_axis, chart_type)
|
| 374 |
+
|
| 375 |
+
return fig
|
| 376 |
+
|
| 377 |
+
except Exception as e:
|
| 378 |
+
st.error(f"β οΈ Failed to generate visualization: {e}")
|
| 379 |
+
return None
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
def generate_multiple_visualizations(suggestions, df):
|
| 383 |
+
"""
|
| 384 |
+
Generates one or more visualizations based on GPT-4o's suggestions.
|
| 385 |
+
Handles both single and multiple suggestions.
|
| 386 |
+
"""
|
| 387 |
+
visualizations = []
|
| 388 |
+
|
| 389 |
+
for suggestion in suggestions:
|
| 390 |
+
fig = generate_visualization(suggestion, df)
|
| 391 |
+
if fig:
|
| 392 |
+
# Apply chart-specific statistics
|
| 393 |
+
fig = add_stats_to_figure(fig, df, suggestion["y_axis"], suggestion["chart_type"])
|
| 394 |
+
visualizations.append(fig)
|
| 395 |
+
|
| 396 |
+
if not visualizations and suggestions:
|
| 397 |
+
st.warning("β οΈ No valid visualization found. Displaying the most relevant one.")
|
| 398 |
+
best_suggestion = suggestions[0]
|
| 399 |
+
fig = generate_visualization(best_suggestion, df)
|
| 400 |
+
fig = add_stats_to_figure(fig, df, best_suggestion["y_axis"], best_suggestion["chart_type"])
|
| 401 |
+
visualizations.append(fig)
|
| 402 |
+
|
| 403 |
+
return visualizations
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
def handle_visualization_suggestions(suggestions, df):
|
| 407 |
+
"""
|
| 408 |
+
Determines whether to generate a single or multiple visualizations.
|
| 409 |
+
"""
|
| 410 |
+
visualizations = []
|
| 411 |
+
|
| 412 |
+
# If multiple suggestions, generate multiple plots
|
| 413 |
+
if isinstance(suggestions, list) and len(suggestions) > 1:
|
| 414 |
+
visualizations = generate_multiple_visualizations(suggestions, df)
|
| 415 |
+
|
| 416 |
+
# If only one suggestion, generate a single plot
|
| 417 |
+
elif isinstance(suggestions, dict) or (isinstance(suggestions, list) and len(suggestions) == 1):
|
| 418 |
+
suggestion = suggestions[0] if isinstance(suggestions, list) else suggestions
|
| 419 |
+
fig = generate_visualization(suggestion, df)
|
| 420 |
+
if fig:
|
| 421 |
+
visualizations.append(fig)
|
| 422 |
+
|
| 423 |
+
# Handle cases when no visualization could be generated
|
| 424 |
+
if not visualizations:
|
| 425 |
+
st.warning("β οΈ Unable to generate any visualization based on the suggestion.")
|
| 426 |
+
|
| 427 |
+
# Display all generated visualizations
|
| 428 |
+
for fig in visualizations:
|
| 429 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 430 |
+
|
| 431 |
|
| 432 |
def escape_markdown(text):
|
| 433 |
# Ensure text is a string
|
|
|
|
| 561 |
st.markdown(report_result if report_result else "β οΈ No Report Generated.")
|
| 562 |
|
| 563 |
# Step 4: Generate Visualizations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 565 |
|
| 566 |
# Step 5: Insert Visual Insights
|
| 567 |
st.markdown("### Visual Insights")
|
| 568 |
+
|
|
|
|
| 569 |
|
| 570 |
# Step 6: Display Concise Conclusion
|
| 571 |
#st.markdown("#### Conclusion")
|
|
|
|
| 573 |
safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
|
| 574 |
st.markdown(safe_conclusion)
|
| 575 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
|
| 577 |
# Sidebar Reference
|
| 578 |
with st.sidebar:
|
| 579 |
st.header("π Reference:")
|
| 580 |
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|
|
|