Create interim.py
Browse files- interim.py +154 -0
interim.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import sqlite3
|
| 4 |
+
import os
|
| 5 |
+
import json
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from datetime import datetime, timezone
|
| 8 |
+
from crewai import Agent, Crew, Process, Task
|
| 9 |
+
from crewai_tools import tool
|
| 10 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 11 |
+
from langchain_groq import ChatGroq
|
| 12 |
+
from langchain.schema.output import LLMResult
|
| 13 |
+
from langchain_core.callbacks.base import BaseCallbackHandler
|
| 14 |
+
from langchain_community.tools.sql_database.tool import (
|
| 15 |
+
InfoSQLDatabaseTool,
|
| 16 |
+
ListSQLDatabaseTool,
|
| 17 |
+
QuerySQLCheckerTool,
|
| 18 |
+
QuerySQLDataBaseTool,
|
| 19 |
+
)
|
| 20 |
+
from langchain_community.utilities.sql_database import SQLDatabase
|
| 21 |
+
import tempfile
|
| 22 |
+
|
| 23 |
+
# Setup GROQ API Key
|
| 24 |
+
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
| 25 |
+
|
| 26 |
+
# Callback handler for logging LLM responses
|
| 27 |
+
class Event:
|
| 28 |
+
def __init__(self, event, text):
|
| 29 |
+
self.event = event
|
| 30 |
+
self.timestamp = datetime.now(timezone.utc).isoformat()
|
| 31 |
+
self.text = text
|
| 32 |
+
|
| 33 |
+
class LLMCallbackHandler(BaseCallbackHandler):
|
| 34 |
+
def __init__(self, log_path: Path):
|
| 35 |
+
self.log_path = log_path
|
| 36 |
+
|
| 37 |
+
def on_llm_start(self, serialized, prompts, **kwargs):
|
| 38 |
+
with self.log_path.open("a", encoding="utf-8") as file:
|
| 39 |
+
file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n")
|
| 40 |
+
|
| 41 |
+
def on_llm_end(self, response: LLMResult, **kwargs):
|
| 42 |
+
generation = response.generations[-1][-1].message.content
|
| 43 |
+
with self.log_path.open("a", encoding="utf-8") as file:
|
| 44 |
+
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
| 45 |
+
|
| 46 |
+
# LLM Setup
|
| 47 |
+
llm = ChatGroq(
|
| 48 |
+
temperature=0,
|
| 49 |
+
model_name="mixtral-8x7b-32768",
|
| 50 |
+
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# App Header
|
| 54 |
+
st.title("SQL-RAG with CrewAI π")
|
| 55 |
+
st.write("Provide your query, and the app will extract, analyze, and summarize the data dynamically.")
|
| 56 |
+
|
| 57 |
+
# File Upload for Dataset
|
| 58 |
+
uploaded_file = st.file_uploader("Upload your dataset (CSV file)", type=["csv"])
|
| 59 |
+
|
| 60 |
+
if uploaded_file:
|
| 61 |
+
st.success("File uploaded successfully!")
|
| 62 |
+
|
| 63 |
+
# Temporary directory for SQLite DB
|
| 64 |
+
temp_dir = tempfile.TemporaryDirectory()
|
| 65 |
+
db_path = os.path.join(temp_dir.name, "data.db")
|
| 66 |
+
|
| 67 |
+
# Create SQLite database
|
| 68 |
+
df = pd.read_csv(uploaded_file)
|
| 69 |
+
connection = sqlite3.connect(db_path)
|
| 70 |
+
df.to_sql("data_table", connection, if_exists="replace", index=False)
|
| 71 |
+
|
| 72 |
+
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
| 73 |
+
|
| 74 |
+
# Tools
|
| 75 |
+
@tool("list_tables")
|
| 76 |
+
def list_tables() -> str:
|
| 77 |
+
return ListSQLDatabaseTool(db=db).invoke("")
|
| 78 |
+
|
| 79 |
+
@tool("tables_schema")
|
| 80 |
+
def tables_schema(tables: str) -> str:
|
| 81 |
+
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
| 82 |
+
|
| 83 |
+
@tool("execute_sql")
|
| 84 |
+
def execute_sql(sql_query: str) -> str:
|
| 85 |
+
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
| 86 |
+
|
| 87 |
+
@tool("check_sql")
|
| 88 |
+
def check_sql(sql_query: str) -> str:
|
| 89 |
+
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
| 90 |
+
|
| 91 |
+
# Agents
|
| 92 |
+
sql_dev = Agent(
|
| 93 |
+
role="Senior Database Developer",
|
| 94 |
+
goal="Extract data from the database based on user query",
|
| 95 |
+
llm=llm,
|
| 96 |
+
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
| 97 |
+
allow_delegation=False,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
data_analyst = Agent(
|
| 101 |
+
role="Senior Data Analyst",
|
| 102 |
+
goal="Analyze the database response and provide insights",
|
| 103 |
+
llm=llm,
|
| 104 |
+
allow_delegation=False,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
report_writer = Agent(
|
| 108 |
+
role="Senior Report Editor",
|
| 109 |
+
goal="Summarize the analysis into a short report",
|
| 110 |
+
llm=llm,
|
| 111 |
+
allow_delegation=False,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Tasks
|
| 115 |
+
extract_data = Task(
|
| 116 |
+
description="Extract data required for the query: {query}.",
|
| 117 |
+
expected_output="Database result for the query",
|
| 118 |
+
agent=sql_dev,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
analyze_data = Task(
|
| 122 |
+
description="Analyze the data and generate insights for: {query}.",
|
| 123 |
+
expected_output="Detailed analysis text",
|
| 124 |
+
agent=data_analyst,
|
| 125 |
+
context=[extract_data],
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
write_report = Task(
|
| 129 |
+
description="Summarize the analysis into a concise executive report.",
|
| 130 |
+
expected_output="Markdown report",
|
| 131 |
+
agent=report_writer,
|
| 132 |
+
context=[analyze_data],
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Crew
|
| 136 |
+
crew = Crew(
|
| 137 |
+
agents=[sql_dev, data_analyst, report_writer],
|
| 138 |
+
tasks=[extract_data, analyze_data, write_report],
|
| 139 |
+
process=Process.sequential,
|
| 140 |
+
verbose=2,
|
| 141 |
+
memory=False,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# User Input Query
|
| 145 |
+
query = st.text_input("Enter your query:")
|
| 146 |
+
if query:
|
| 147 |
+
with st.spinner("Processing your query..."):
|
| 148 |
+
inputs = {"query": query}
|
| 149 |
+
result = crew.kickoff(inputs=inputs)
|
| 150 |
+
st.markdown("### Analysis Report:")
|
| 151 |
+
st.markdown(result)
|
| 152 |
+
|
| 153 |
+
# Clean up
|
| 154 |
+
temp_dir.cleanup()
|