File size: 6,946 Bytes
df76deb
d110ed4
 
 
 
 
 
 
 
df76deb
d110ed4
df76deb
d110ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323a842
d110ed4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
from PIL import Image, ImageFilter
import matplotlib.pyplot as plt
import torch
import cv2
import numpy as np
from torchvision import transforms
from transformers import AutoModelForImageSegmentation, DepthProImageProcessorFast, DepthProForDepthEstimation
import requests

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True)
torch.set_float32_matmul_precision(['high', 'highest'][0])
birefnet.to('cuda')
birefnet.eval()
birefnet.half()

def extract_object(image, t1, t2):
    # Data settings
    image_size = (1024, 1024)
    transform_image = transforms.Compose([
        transforms.Resize(image_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    # image = Image.open(imagepath)
    image1 = image.copy()
    input_images = transform_image(image1).unsqueeze(0).to('cuda').half()

    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image1.size)
    image1.putalpha(mask)

    blurredBg = cv2.GaussianBlur(np.array(imageResized), (0, 0), sigmaX=15, sigmaY=15)

    mask = np.array(result[1].convert("L"))
    _, maskBinary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
    img = cv2.cvtColor(np.array(imageResized), cv2.COLOR_RGB2BGR)
    
    maskInv = cv2.bitwise_not(maskBinary)
    maskInv3 = cv2.cvtColor(maskInv, cv2.COLOR_GRAY2BGR)
    
    foreground = cv2.bitwise_and(img, cv2.bitwise_not(maskInv3))
    background = cv2.bitwise_and(blurredBg, maskInv3)
    finalImg = cv2.add(cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB), background)

# plt.figure(figsize=(15, 5))
    # return image1, mask

# def depth_estimation():
    imageProcessor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
    model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf").to(device)
    
    inputs = imageProcessor(images=imageResized, return_tensors="pt").to(device)
    
    with torch.no_grad():
        outputs = model(**inputs)
    
    post_processed_output = imageProcessor.post_process_depth_estimation(
        outputs, target_sizes=[(imageResized.height, imageResized.width)],
    )
    
    field_of_view = post_processed_output[0]["field_of_view"]
    focal_length = post_processed_output[0]["focal_length"]
    depth = post_processed_output[0]["predicted_depth"]
    depth = (depth - depth.min()) / (depth.max() - depth.min())
    depth = depth * 255.
    depth = depth.detach().cpu().numpy()
    # print(depth)
    depthImg = Image.fromarray(depth.astype("uint8"))
    
    # threshold1 = 255 / 20      # ~85
    # threshold2 = 2 * 255 / 3   # ~170

    threshold1 = (t1/10) * 255
    threshold2 = (t2/10) * 255
    
    # Precompute blurred versions for each region
    img_foreground = img.copy()  # No blur for foreground
    img_middleground = cv2.GaussianBlur(img, (0, 0), sigmaX=7, sigmaY=7)
    img_background = cv2.GaussianBlur(img, (0, 0), sigmaX=15, sigmaY=15)
    
    # Create masks for each region (as float arrays for proper blending)
    mask_fg = (depth < threshold1).astype(np.float32)
    mask_mg = ((depth >= threshold1) & (depth < threshold2)).astype(np.float32)
    mask_bg = (depth >= threshold2).astype(np.float32)
    
    # Expand masks to 3 channels (H, W, 3)
    mask_fg = np.stack([mask_fg]*3, axis=-1)
    mask_mg = np.stack([mask_mg]*3, axis=-1)
    mask_bg = np.stack([mask_bg]*3, axis=-1)
    
    # Combine the images using the masks in a vectorized manner.
    final_img = (img_foreground * mask_fg + 
                 img_middleground * mask_mg + 
                 img_background * mask_bg).astype(np.uint8)
    
    # Convert the result back to RGB for display with matplotlib.
    final_img_rgb = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB)

    return image1, final_img

# Visualization
# plt.axis("off")
# subplots for 3 images: original, segmented, mask

# plt.figure(figsize=(15, 5))

# image = Image.open('/content/drive/MyDrive/eee515-hw3/hw3-q24.jpg')
# #resize the image to 512x512
# imageResized = image.resize((512, 512))

# result = extract_object(birefnet, imageResized)
# plt.subplot(1, 3, 1)
# plt.title("Original Resized Image")
# plt.imshow(imageResized)

# plt.subplot(1, 3, 2)
# plt.title("Segmented Image")
# plt.imshow(result[0])

# plt.subplot(1, 3, 3)
# plt.title("Mask")
# plt.imshow(result[1], cmap="gray")
# plt.show()

# Create a Gradio interface


def build_interface(image1, image2):
    """Build UI for gradio app
    """
    title = "Bokeh and Lens Blur"
    with gr.Blocks(theme=gr.themes.Soft(), title=title, fill_width=True) as interface:
        with gr.Row():
            # with gr.Column(scale=3):
            #     with gr.Group():
            #         input_text_box = gr.Textbox(
            #             value=None,
            #             label="Prompt",
            #             lines=2,
            #         )
            #         # gr.Markdown("### Set the values for Middleground and Background")
            #         # fg = gr.Slider(minimum=0, maximum=99, step=1, value=33, label="Middleground")
            #         # mg = gr.Slider(minimum=0, maximum=99, step=1, value=66, label="Background")
            #     with gr.Row():
            #         submit_button = gr.Button("Submit", variant="primary")
            with gr.Column(scale=3):
                model3d = gr.Model3D(
                    label="Output", height="45em", interactive=False
                )

            with gr.Column(scale=3):
                model3d = gr.Model3D(
                    label="Output", height="45em", interactive=False
                )
    
        submit_button.click(
            handle_text_prompt,
            inputs=[
                input_text_box,
                variance
            ],
            outputs=[
                model3d
            ]
        )
                
    return interface

# demo = gr.Interface(sepia, gr.Image(), "image")

title = "Gaussian Blur Background App"
description = (
    "Upload an image to apply a realistic background blur effect. "
    "The app segments the foreground using RMBG-2.0 and then applies a Gaussian "
    "blur (σ=15) to the background, simulating a video conferencing blur effect."
)

iface = gr.Interface(
    fn=apply_blur_effect,
    inputs=[gr.Image(type="pil", label="Input Image"), gr.Slider(minimum=0, maximum=40, step=1, value=33, label="Middleground"), gr.Slider(minimum=40, maximum=99, step=1, value=66, label="Background")],
    outputs=[gr.Image(type="pil", label="Bokeh Image"), gr.Image(type="pil", label="Lens Blur Image")],
    title=title,
    description=description,
    allow_flagging="never"
)

demo = build_interface()
demo.queue(default_concurrency_limit=1)
demo.launch()