EEE515-HW3 / app.py
Ash2505's picture
Update app.py
e28b51d verified
raw
history blame
8.13 kB
import cv2
import numpy as np
from PIL import Image, ImageFilter
import torch
import gradio as gr
from torchvision import transforms
from transformers import (
AutoModelForImageSegmentation,
DepthProImageProcessorFast,
DepthProForDepthEstimation,
)
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
# -----------------------------
# Load Segmentation Model (RMBG-2.0 by briaai)
# -----------------------------
seg_model = AutoModelForImageSegmentation.from_pretrained(
"briaai/RMBG-2.0", trust_remote_code=True
)
# Set higher precision for matmul if desired
torch.set_float32_matmul_precision(["high", "highest"][0])
seg_model.to(device)
seg_model.eval()
# Define segmentation image size and transform
seg_image_size = (1024, 1024)
seg_transform = transforms.Compose([
transforms.Resize(seg_image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# -----------------------------
# Load Depth Estimation Model (DepthPro by Apple)
# -----------------------------
depth_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
depth_model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf")
depth_model.to(device)
depth_model.eval()
# -----------------------------
# Define the Segmentation-Based Blur Effect
# -----------------------------
def segmentation_blur_effect(input_image: Image.Image):
"""
Creates a segmentation mask using RMBG-2.0 and applies a Gaussian blur (sigma=15)
to the background while keeping the foreground sharp.
Returns:
- final segmented and blurred image (PIL Image)
- segmentation mask (PIL Image)
- blurred background image (PIL Image) [optional display]
"""
# Resize input for segmentation processing
imageResized = input_image.resize(seg_image_size)
input_tensor = seg_transform(imageResized).unsqueeze(0).to(device)
with torch.no_grad():
preds = seg_model(input_tensor)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Convert predicted mask to a PIL image and resize to original input size
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(input_image.size)
# Create a binary mask (convert to grayscale, then threshold)
mask_np = np.array(mask.convert("L"))
_, maskBinary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
# Convert the resized image to an OpenCV BGR array
img = cv2.cvtColor(np.array(imageResized), cv2.COLOR_RGB2BGR)
# Apply Gaussian blur (sigmaX=15, sigmaY=15)
blurredBg = cv2.GaussianBlur(np.array(imageResized), (0, 0), sigmaX=15, sigmaY=15)
# Create the inverse mask and convert to 3 channels
maskInv = cv2.bitwise_not(maskBinary)
maskInv3 = cv2.cvtColor(maskInv, cv2.COLOR_GRAY2BGR)
# Extract the foreground and background separately
foreground = cv2.bitwise_and(img, cv2.bitwise_not(maskInv3))
background = cv2.bitwise_and(blurredBg, maskInv3)
# Combine the two components
finalImg = cv2.add(cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB), background)
finalImg_pil = Image.fromarray(finalImg)
blurredBg_pil = Image.fromarray(cv2.cvtColor(blurredBg, cv2.COLOR_BGR2RGB))
return finalImg_pil, mask, blurredBg_pil
# -----------------------------
# Define the Depth-Based Lens Blur Effect
# -----------------------------
def lens_blur_effect(input_image: Image.Image):
"""
Uses DepthPro to estimate a depth map and applies a dynamic lens blur effect
by precomputing three versions of the image (foreground, middleground, background)
with increasing blur. Regions are blended based on the estimated depth.
Returns:
- Depth map (PIL Image)
- Final lens-blurred image (PIL Image)
- Foreground mask (PIL Image)
- Middleground mask (PIL Image)
- Background mask (PIL Image)
"""
# Process the image with the depth estimation model
inputs = depth_processor(images=input_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = depth_model(**inputs)
post_processed_output = depth_processor.post_process_depth_estimation(
outputs, target_sizes=[(input_image.height, input_image.width)]
)
depth = post_processed_output[0]["predicted_depth"]
# Normalize depth to [0, 255]
depth = (depth - depth.min()) / (depth.max() - depth.min())
depth = depth * 255.
depth = depth.detach().cpu().numpy()
depth_map = depth.astype(np.uint8)
depthImg = Image.fromarray(depth_map)
# Convert input image to OpenCV BGR format
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
# Precompute three blurred versions of the image
img_foreground = img.copy() # No blur for foreground
img_middleground = cv2.GaussianBlur(img, (0, 0), sigmaX=7, sigmaY=7)
img_background = cv2.GaussianBlur(img, (0, 0), sigmaX=15, sigmaY=15)
# Define depth thresholds (using 1/3 and 2/3 of 255)
threshold1 = 255 / 3 # ~85
threshold2 = 2 * 255 / 3 # ~170
# Create masks for the three regions based on depth
mask_fg = (depth_map < threshold1).astype(np.float32)
mask_mg = ((depth_map >= threshold1) & (depth_map < threshold2)).astype(np.float32)
mask_bg = (depth_map >= threshold2).astype(np.float32)
# Expand masks to 3 channels to match image dimensions
mask_fg_3 = np.stack([mask_fg]*3, axis=-1)
mask_mg_3 = np.stack([mask_mg]*3, axis=-1)
mask_bg_3 = np.stack([mask_bg]*3, axis=-1)
# Combine the images using the masks (vectorized blending)
final_img = (img_foreground * mask_fg_3 +
img_middleground * mask_mg_3 +
img_background * mask_bg_3).astype(np.uint8)
final_img_rgb = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB)
lensBlurImage = Image.fromarray(final_img_rgb)
# Create mask images (scaled to 0-255)
mask_fg_img = Image.fromarray((mask_fg * 255).astype(np.uint8))
mask_mg_img = Image.fromarray((mask_mg * 255).astype(np.uint8))
mask_bg_img = Image.fromarray((mask_bg * 255).astype(np.uint8))
return depthImg, lensBlurImage, mask_fg_img, mask_mg_img, mask_bg_img
# -----------------------------
# Gradio App: Process Image and Display Multiple Effects
# -----------------------------
def process_image(input_image: Image.Image):
"""
Processes the uploaded image to generate:
1. Segmentation-based Gaussian blur effect.
2. Segmentation mask.
3. Depth map.
4. Depth-based lens blur effect.
5. Depth-based masks for foreground, middleground, and background.
"""
seg_blur, seg_mask, _ = segmentation_blur_effect(input_image)
depth_map_img, lens_blur_img, mask_fg_img, mask_mg_img, mask_bg_img = lens_blur_effect(input_image)
return (
seg_blur,
seg_mask,
depth_map_img,
lens_blur_img,
mask_fg_img,
mask_mg_img,
mask_bg_img
)
title = "Blur Effects: Gaussian Blur & Depth-Based Lens Blur"
description = (
"Upload an image to apply two distinct effects:\n\n"
"1. A segmentation-based Gaussian blur that blurs the background (using RMBG-2.0).\n"
"2. A depth-based lens blur effect that simulates realistic lens blur based on depth (using DepthPro).\n\n"
"Outputs include the blurred image, segmentation mask, depth map, lens-blurred image, and depth masks."
)
demo = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil", label="Input Image"),
outputs=[
gr.Image(type="pil", label="Segmentation-Based Blur"),
gr.Image(type="pil", label="Segmentation Mask"),
gr.Image(type="pil", label="Depth Map"),
gr.Image(type="pil", label="Depth-Based Lens Blur"),
gr.Image(type="pil", label="Foreground Depth Mask"),
gr.Image(type="pil", label="Middleground Depth Mask"),
gr.Image(type="pil", label="Background Depth Mask")
],
title=title,
description=description,
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch()