Spaces:
Sleeping
Sleeping
Resize changes
Browse files
app.py
CHANGED
@@ -19,7 +19,6 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
19 |
seg_model = AutoModelForImageSegmentation.from_pretrained(
|
20 |
"briaai/RMBG-2.0", trust_remote_code=True
|
21 |
)
|
22 |
-
# Set higher precision for matmul if desired
|
23 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
24 |
seg_model.to(device)
|
25 |
seg_model.eval()
|
@@ -47,13 +46,8 @@ def segmentation_blur_effect(input_image: Image.Image):
|
|
47 |
"""
|
48 |
Creates a segmentation mask using RMBG-2.0 and applies a Gaussian blur (sigma=15)
|
49 |
to the background while keeping the foreground sharp.
|
50 |
-
|
51 |
-
Returns:
|
52 |
-
- final segmented and blurred image (PIL Image)
|
53 |
-
- segmentation mask (PIL Image)
|
54 |
-
- blurred background image (PIL Image) [optional display]
|
55 |
"""
|
56 |
-
# Resize input for segmentation processing
|
57 |
imageResized = input_image.resize(seg_image_size)
|
58 |
input_tensor = seg_transform(imageResized).unsqueeze(0).to(device)
|
59 |
|
@@ -61,11 +55,12 @@ def segmentation_blur_effect(input_image: Image.Image):
|
|
61 |
preds = seg_model(input_tensor)[-1].sigmoid().cpu()
|
62 |
pred = preds[0].squeeze()
|
63 |
|
64 |
-
# Convert predicted mask to a PIL image and
|
65 |
pred_pil = transforms.ToPILImage()(pred)
|
66 |
-
mask
|
|
|
67 |
|
68 |
-
#
|
69 |
mask_np = np.array(mask.convert("L"))
|
70 |
_, maskBinary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
|
71 |
|
@@ -74,20 +69,19 @@ def segmentation_blur_effect(input_image: Image.Image):
|
|
74 |
# Apply Gaussian blur (sigmaX=15, sigmaY=15)
|
75 |
blurredBg = cv2.GaussianBlur(np.array(imageResized), (0, 0), sigmaX=15, sigmaY=15)
|
76 |
|
77 |
-
# Create the inverse mask and convert to 3 channels
|
78 |
maskInv = cv2.bitwise_not(maskBinary)
|
79 |
maskInv3 = cv2.cvtColor(maskInv, cv2.COLOR_GRAY2BGR)
|
80 |
|
81 |
-
# Extract the foreground and background
|
82 |
foreground = cv2.bitwise_and(img, cv2.bitwise_not(maskInv3))
|
83 |
background = cv2.bitwise_and(blurredBg, maskInv3)
|
84 |
|
85 |
-
# Combine
|
86 |
finalImg = cv2.add(cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB), background)
|
87 |
finalImg_pil = Image.fromarray(finalImg)
|
88 |
-
blurredBg_pil = Image.fromarray(cv2.cvtColor(blurredBg, cv2.COLOR_BGR2RGB))
|
89 |
|
90 |
-
return finalImg_pil, mask
|
91 |
|
92 |
# -----------------------------
|
93 |
# Define the Depth-Based Lens Blur Effect
|
@@ -95,15 +89,9 @@ def segmentation_blur_effect(input_image: Image.Image):
|
|
95 |
def lens_blur_effect(input_image: Image.Image):
|
96 |
"""
|
97 |
Uses DepthPro to estimate a depth map and applies a dynamic lens blur effect
|
98 |
-
by
|
99 |
-
with increasing blur.
|
100 |
-
|
101 |
-
Returns:
|
102 |
-
- Depth map (PIL Image)
|
103 |
-
- Final lens-blurred image (PIL Image)
|
104 |
-
- Foreground mask (PIL Image)
|
105 |
-
- Middleground mask (PIL Image)
|
106 |
-
- Background mask (PIL Image)
|
107 |
"""
|
108 |
# Process the image with the depth estimation model
|
109 |
inputs = depth_processor(images=input_image, return_tensors="pt").to(device)
|
@@ -124,7 +112,7 @@ def lens_blur_effect(input_image: Image.Image):
|
|
124 |
# Convert input image to OpenCV BGR format
|
125 |
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
126 |
|
127 |
-
# Precompute
|
128 |
img_foreground = img.copy() # No blur for foreground
|
129 |
img_middleground = cv2.GaussianBlur(img, (0, 0), sigmaX=7, sigmaY=7)
|
130 |
img_background = cv2.GaussianBlur(img, (0, 0), sigmaX=15, sigmaY=15)
|
@@ -133,17 +121,17 @@ def lens_blur_effect(input_image: Image.Image):
|
|
133 |
threshold1 = 255 / 3 # ~85
|
134 |
threshold2 = 2 * 255 / 3 # ~170
|
135 |
|
136 |
-
# Create masks for
|
137 |
mask_fg = (depth_map < threshold1).astype(np.float32)
|
138 |
mask_mg = ((depth_map >= threshold1) & (depth_map < threshold2)).astype(np.float32)
|
139 |
mask_bg = (depth_map >= threshold2).astype(np.float32)
|
140 |
|
141 |
-
# Expand masks to 3 channels
|
142 |
mask_fg_3 = np.stack([mask_fg]*3, axis=-1)
|
143 |
mask_mg_3 = np.stack([mask_mg]*3, axis=-1)
|
144 |
mask_bg_3 = np.stack([mask_bg]*3, axis=-1)
|
145 |
|
146 |
-
#
|
147 |
final_img = (img_foreground * mask_fg_3 +
|
148 |
img_middleground * mask_mg_3 +
|
149 |
img_background * mask_bg_3).astype(np.uint8)
|
@@ -151,7 +139,7 @@ def lens_blur_effect(input_image: Image.Image):
|
|
151 |
final_img_rgb = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB)
|
152 |
lensBlurImage = Image.fromarray(final_img_rgb)
|
153 |
|
154 |
-
# Create mask images (scaled to 0-255)
|
155 |
mask_fg_img = Image.fromarray((mask_fg * 255).astype(np.uint8))
|
156 |
mask_mg_img = Image.fromarray((mask_mg * 255).astype(np.uint8))
|
157 |
mask_bg_img = Image.fromarray((mask_bg * 255).astype(np.uint8))
|
@@ -170,7 +158,7 @@ def process_image(input_image: Image.Image):
|
|
170 |
4. Depth-based lens blur effect.
|
171 |
5. Depth-based masks for foreground, middleground, and background.
|
172 |
"""
|
173 |
-
seg_blur, seg_mask
|
174 |
depth_map_img, lens_blur_img, mask_fg_img, mask_mg_img, mask_bg_img = lens_blur_effect(input_image)
|
175 |
|
176 |
return (
|
@@ -188,7 +176,7 @@ description = (
|
|
188 |
"Upload an image to apply two distinct effects:\n\n"
|
189 |
"1. A segmentation-based Gaussian blur that blurs the background (using RMBG-2.0).\n"
|
190 |
"2. A depth-based lens blur effect that simulates realistic lens blur based on depth (using DepthPro).\n\n"
|
191 |
-
"Outputs include the blurred image, segmentation mask, depth map, lens-blurred image, and depth masks."
|
192 |
)
|
193 |
|
194 |
demo = gr.Interface(
|
|
|
19 |
seg_model = AutoModelForImageSegmentation.from_pretrained(
|
20 |
"briaai/RMBG-2.0", trust_remote_code=True
|
21 |
)
|
|
|
22 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
23 |
seg_model.to(device)
|
24 |
seg_model.eval()
|
|
|
46 |
"""
|
47 |
Creates a segmentation mask using RMBG-2.0 and applies a Gaussian blur (sigma=15)
|
48 |
to the background while keeping the foreground sharp.
|
|
|
|
|
|
|
|
|
|
|
49 |
"""
|
50 |
+
# Resize input image for segmentation processing
|
51 |
imageResized = input_image.resize(seg_image_size)
|
52 |
input_tensor = seg_transform(imageResized).unsqueeze(0).to(device)
|
53 |
|
|
|
55 |
preds = seg_model(input_tensor)[-1].sigmoid().cpu()
|
56 |
pred = preds[0].squeeze()
|
57 |
|
58 |
+
# Convert predicted mask to a PIL image and ensure it matches imageResized's size
|
59 |
pred_pil = transforms.ToPILImage()(pred)
|
60 |
+
# Resize mask to match imageResized to avoid size mismatch in OpenCV operations
|
61 |
+
mask = pred_pil.resize(imageResized.size)
|
62 |
|
63 |
+
# Convert mask to grayscale and threshold to create a binary mask
|
64 |
mask_np = np.array(mask.convert("L"))
|
65 |
_, maskBinary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
|
66 |
|
|
|
69 |
# Apply Gaussian blur (sigmaX=15, sigmaY=15)
|
70 |
blurredBg = cv2.GaussianBlur(np.array(imageResized), (0, 0), sigmaX=15, sigmaY=15)
|
71 |
|
72 |
+
# Create the inverse mask and convert it to 3 channels
|
73 |
maskInv = cv2.bitwise_not(maskBinary)
|
74 |
maskInv3 = cv2.cvtColor(maskInv, cv2.COLOR_GRAY2BGR)
|
75 |
|
76 |
+
# Extract the foreground and background using the mask
|
77 |
foreground = cv2.bitwise_and(img, cv2.bitwise_not(maskInv3))
|
78 |
background = cv2.bitwise_and(blurredBg, maskInv3)
|
79 |
|
80 |
+
# Combine foreground and background; convert back to RGB for display
|
81 |
finalImg = cv2.add(cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB), background)
|
82 |
finalImg_pil = Image.fromarray(finalImg)
|
|
|
83 |
|
84 |
+
return finalImg_pil, mask
|
85 |
|
86 |
# -----------------------------
|
87 |
# Define the Depth-Based Lens Blur Effect
|
|
|
89 |
def lens_blur_effect(input_image: Image.Image):
|
90 |
"""
|
91 |
Uses DepthPro to estimate a depth map and applies a dynamic lens blur effect
|
92 |
+
by blending three versions of the image (foreground, middleground, background)
|
93 |
+
with increasing blur levels. Returns the depth map, the final lens-blurred image,
|
94 |
+
and the depth masks.
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"""
|
96 |
# Process the image with the depth estimation model
|
97 |
inputs = depth_processor(images=input_image, return_tensors="pt").to(device)
|
|
|
112 |
# Convert input image to OpenCV BGR format
|
113 |
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
114 |
|
115 |
+
# Precompute blurred versions for different depth regions
|
116 |
img_foreground = img.copy() # No blur for foreground
|
117 |
img_middleground = cv2.GaussianBlur(img, (0, 0), sigmaX=7, sigmaY=7)
|
118 |
img_background = cv2.GaussianBlur(img, (0, 0), sigmaX=15, sigmaY=15)
|
|
|
121 |
threshold1 = 255 / 3 # ~85
|
122 |
threshold2 = 2 * 255 / 3 # ~170
|
123 |
|
124 |
+
# Create masks for foreground, middleground, and background based on depth
|
125 |
mask_fg = (depth_map < threshold1).astype(np.float32)
|
126 |
mask_mg = ((depth_map >= threshold1) & (depth_map < threshold2)).astype(np.float32)
|
127 |
mask_bg = (depth_map >= threshold2).astype(np.float32)
|
128 |
|
129 |
+
# Expand masks to 3 channels
|
130 |
mask_fg_3 = np.stack([mask_fg]*3, axis=-1)
|
131 |
mask_mg_3 = np.stack([mask_mg]*3, axis=-1)
|
132 |
mask_bg_3 = np.stack([mask_bg]*3, axis=-1)
|
133 |
|
134 |
+
# Blend the images using the masks (vectorized operation)
|
135 |
final_img = (img_foreground * mask_fg_3 +
|
136 |
img_middleground * mask_mg_3 +
|
137 |
img_background * mask_bg_3).astype(np.uint8)
|
|
|
139 |
final_img_rgb = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB)
|
140 |
lensBlurImage = Image.fromarray(final_img_rgb)
|
141 |
|
142 |
+
# Create mask images for display (scaled to 0-255)
|
143 |
mask_fg_img = Image.fromarray((mask_fg * 255).astype(np.uint8))
|
144 |
mask_mg_img = Image.fromarray((mask_mg * 255).astype(np.uint8))
|
145 |
mask_bg_img = Image.fromarray((mask_bg * 255).astype(np.uint8))
|
|
|
158 |
4. Depth-based lens blur effect.
|
159 |
5. Depth-based masks for foreground, middleground, and background.
|
160 |
"""
|
161 |
+
seg_blur, seg_mask = segmentation_blur_effect(input_image)
|
162 |
depth_map_img, lens_blur_img, mask_fg_img, mask_mg_img, mask_bg_img = lens_blur_effect(input_image)
|
163 |
|
164 |
return (
|
|
|
176 |
"Upload an image to apply two distinct effects:\n\n"
|
177 |
"1. A segmentation-based Gaussian blur that blurs the background (using RMBG-2.0).\n"
|
178 |
"2. A depth-based lens blur effect that simulates realistic lens blur based on depth (using DepthPro).\n\n"
|
179 |
+
"Outputs include the blurred image, segmentation mask, depth map, lens-blurred image, and individual depth masks."
|
180 |
)
|
181 |
|
182 |
demo = gr.Interface(
|