File size: 10,101 Bytes
0b17514 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# app.py
import os
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tempfile import NamedTemporaryFile
from typing import List, Tuple, Dict
import streamlit as st
from PIL import Image
from streamlit_drawable_canvas import st_canvas
from lane_detection import YOLOVideoDetector, LABEL_MAP # Your detector + LABEL_MAP from detection.py
# βββββββββββββββββββββββ Helper Functions βββββββββββββββββββββββ
def extract_four_points(js) -> List[Tuple[int,int]]:
"""
Return exactly four (x,y) clicks from streamlit_drawable_canvas JSON, or None.
"""
if not js or "objects" not in js:
return None
pts = []
for obj in js["objects"]:
if obj.get("type") in {"circle", "rect"}:
x = int(obj["left"] + obj.get("radius", 0))
y = int(obj["top"] + obj.get("radius", 0))
pts.append((x, y))
if len(pts) == 4:
return pts
return None
def draw_poly(img: np.ndarray, pts: List[Tuple[int,int]], color: Tuple[int,int,int]):
"""
Draw a closed polygon (4 points) on img in the specified color.
"""
cv2.polylines(img, [np.array(pts, np.int32)], True, color, 2, cv2.LINE_AA)
# βββββββββββββββββββββββββ Streamlit App βββββββββββββββββββββββββ
st.set_page_config(page_title="π¦ MultiβLane Congestion Demo", layout="wide")
st.title("π¦ MultiβLane Vehicle Congestion Demo")
# Initialize session state
if "num_lanes" not in st.session_state:
st.session_state.num_lanes = None
st.session_state.current_lane = 0
st.session_state.lanes = []
st.session_state.video_path = None
st.session_state.video_uploaded = False
# βββββββββββββββββββ Step 1: Choose Number of Lanes βββββββββββββββββββ
if st.session_state.num_lanes is None:
n = st.number_input(
"How many lanes would you like to define? (1β8)",
min_value=1,
max_value=8,
value=2
)
if st.button("β Set Number of Lanes"):
st.session_state.num_lanes = int(n)
st.session_state.lanes = [None] * st.session_state.num_lanes
st.stop()
# βββββββββββββββββββ Step 2: Upload a Video βββββββββββββββββββ
if not st.session_state.video_uploaded:
uploaded = st.file_uploader(
"Upload video (formats: mp4, avi, mov, mkv)",
type=["mp4","avi","mov","mkv"]
)
if uploaded:
tmpfile = NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded.name)[1])
tmpfile.write(uploaded.read())
tmpfile.flush()
st.session_state.video_path = tmpfile.name
st.session_state.video_uploaded = True
else:
st.stop()
# βββββββββββββββββββ Step 3: Grab First Frame & Scale βββββββββββββββββββ
cap = cv2.VideoCapture(st.session_state.video_path)
ret, first_frame = cap.read()
cap.release()
if not ret:
st.error("β Could not read the first frame of the video.")
st.stop()
frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
h_orig, w_orig = frame_rgb.shape[:2]
# If the frame is wider than 800 px, scale down
MAX_W = 800
if w_orig > MAX_W:
scale = MAX_W / w_orig
disp_w = MAX_W
disp_h = int(h_orig * scale)
frame_disp = cv2.resize(frame_rgb, (disp_w, disp_h), interpolation=cv2.INTER_AREA)
else:
scale = 1.0
disp_w, disp_h = w_orig, h_orig
frame_disp = frame_rgb.copy()
# βββββββββββββββββββ Step 4: Draw 4 Points Per Lane βββββββββββββββββββ
colors = [
(0, 255, 0), (255, 0, 0), (0, 0, 255), (255, 255, 0),
(255, 0, 255), (0, 255, 255), (128, 255, 0), (255, 128, 0)
]
if st.session_state.current_lane < st.session_state.num_lanes:
idx = st.session_state.current_lane
color = colors[idx % len(colors)]
st.subheader(f"2οΈβ£ Click exactly 4 points for Lane #{idx+1}")
st.caption("Draw 4 small circles on the image, then press **Confirm Lane**.")
canvas = st_canvas(
fill_color="rgba(0,0,0,0)",
stroke_width=2,
stroke_color=f"#{color[2]:02X}{color[1]:02X}{color[0]:02X}",
background_image=Image.fromarray(frame_disp),
drawing_mode="point",
key=f"lane_canvas_{idx}",
height=disp_h,
width=disp_w,
update_streamlit=True
)
pts_scaled = extract_four_points(canvas.json_data)
if pts_scaled:
preview = frame_disp.copy()
draw_poly(preview, pts_scaled, color)
st.image(preview, caption=f"Preview β Lane {idx+1}", use_column_width=True)
if st.button(f"Confirm Lane {idx+1}"):
if pts_scaled and len(pts_scaled) == 4:
# Convert scaled points back to original resolution
orig_pts = [(int(x/scale), int(y/scale)) for (x,y) in pts_scaled]
st.session_state.lanes[idx] = orig_pts
st.session_state.current_lane += 1
else:
st.warning("β Please click exactly 4 points.")
st.stop()
# βββββββββββββββββββ Step 5: Display All Lane Polygons βββββββββββββββββββ
st.subheader("β
All lanes defined:")
confirm_img = frame_rgb.copy()
for i, poly in enumerate(st.session_state.lanes):
c = colors[i % len(colors)]
draw_poly(confirm_img, poly, c)
cv2.putText(
confirm_img, f"L{i+1}", (poly[0][0], poly[0][1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, c, 2, cv2.LINE_AA
)
st.image(confirm_img, caption="All lane regions overlaid", use_column_width=True)
# βββββββββββββββββββ Step 6: Input Thresholds & Run Congestion Analysis βββββββββββββββββββ
st.subheader("π§ Congestion Thresholds")
col1, col2 = st.columns(2)
with col1:
low_thresh = st.number_input(
"Green if PCE <",
min_value=0.0,
max_value=20.0,
value=3.5,
step=0.1,
format="%.1f",
help="Values below this will be colored green"
)
with col2:
high_thresh = st.number_input(
"Red if PCE >",
min_value=0.0,
max_value=20.0,
value=6.5,
step=0.1,
format="%.1f",
help="Values above this will be colored red"
)
st.caption("Values between green/red thresholds will be yellow.")
if st.button("π Run Congestion Analysis"):
out_tmp = NamedTemporaryFile(delete=False, suffix=".mp4").name
regions: Dict[int, List[Tuple[int,int]]] = {
i: st.session_state.lanes[i] for i in range(st.session_state.num_lanes)
}
# Instantiate YOLOVideoDetector with 4 positional args
detector = YOLOVideoDetector(
"Weights/last.pt", # <-- replace with your actual .pt path
st.session_state.video_path,
out_tmp,
regions
)
# Assign optional attributes
detector.classes = list(LABEL_MAP.keys())
detector.conf = 0.35
detector.scale = 1.5
with st.spinner("Processing videoβthis may take a while..."):
df = detector.process_video()
st.success("β
Detection + annotation complete!")
# βββββββββββββββββ Compute Per-Lane PCE & Rolling Average βββββββββββββββββ
PCE = {
"auto": 0.8,
"bus": 4.0,
"car": 1.0,
"electric-rickshaw": 0.8,
"large-sized-truck": 4.5,
"medium-sized-truck": 3.5,
"motorbike": 0.5,
"small-sized-truck": 3.0,
}
for rid in regions.keys():
def lane_pce(row, rid=rid):
total = 0.0
for vt, factor in PCE.items():
coln = f"{vt}_{rid}"
cnt = row.get(coln, 0)
total += int(cnt) * factor
return total
df[f"PCE_lane{rid}"] = df.apply(lane_pce, axis=1)
df[f"PCE_lane{rid}_avg"] = df[f"PCE_lane{rid}"].rolling(window=5, min_periods=1).mean()
# βββββββββββββββββββ Lane-Wise Subplots with Smooth Line + Colored Markers βββββββββββββββββββ
num_lanes = len(regions)
fig, axes = plt.subplots(num_lanes, 1, figsize=(10, 3 * num_lanes), sharex=True)
if num_lanes == 1:
axes = [axes]
for rid, ax in zip(regions.keys(), axes):
x = df["Frame Number"].values
y = df[f"PCE_lane{rid}_avg"].values
# 1) Plot a smooth continuous line in dark gray
ax.plot(x, y, color="gray", linewidth=1.2)
# 2) Overlay colored markers at each frame
colors_list = []
for yi in y:
if yi < low_thresh:
colors_list.append("green")
elif yi > high_thresh:
colors_list.append("red")
else:
colors_list.append("yellow")
ax.scatter(x, y, c=colors_list, s=20, edgecolors="black", linewidths=0.3)
ax.set_title(f"Lane {rid} PCE (rolling average)")
ax.set_ylabel("PCE")
ax.grid(alpha=0.3)
axes[-1].set_xlabel("Frame Number")
plt.tight_layout()
st.subheader("π LaneβWise Congestion Plots")
st.pyplot(fig)
# βββββββββββββββββββ Display Annotated Video & CSV Download βββββββββββββββββββ
st.subheader("π¬ Annotated Output Video")
with open(out_tmp, "rb") as f:
st.video(f.read())
csv_bytes = df.to_csv(index=False).encode("utf-8")
st.download_button(
label="Download full counts + PCE CSV",
data=csv_bytes,
file_name="counts_and_pce.csv",
mime="text/csv"
)
|