File size: 6,180 Bytes
b56f39c e6d82af b56f39c 52079dd 68c1f7a b56f39c a4bb376 1f5e781 a4bb376 b56f39c 1f5e781 b56f39c 868c838 b56f39c 868c838 b56f39c 1f5e781 b56f39c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import gradio as gr
import os
import sys
import random
import string
import time
from queue import Queue
from threading import Thread
import requests
model_interface = gr.Interface.load("models/segmind/SSD-1B")
API_URL = "https://api-inference.huggingface.co/models/segmind/SSD-1B"
def restart_script_periodically():
while True:
random_time = random.randint(540, 600)
time.sleep(random_time)
os.execl(sys.executable, sys.executable, *sys.argv)
restart_thread = Thread(target=restart_script_periodically, daemon=True)
restart_thread.start()
queue = Queue()
queue_threshold = 100
def add_random_noise(prompt, noise_level=0.00):
if noise_level == 0:
noise_level = 0.00
percentage_noise = noise_level * 5
num_noise_chars = int(len(prompt) * (percentage_noise / 100))
noise_indices = random.sample(range(len(prompt)), num_noise_chars)
prompt_list = list(prompt)
noise_chars = list(string.ascii_letters + string.punctuation + ' ' + string.digits)
noise_chars.extend(['๐', '๐ฉ', '๐', '๐ค', '๐', '๐ค', '๐ญ', '๐', '๐ท', '๐คฏ', '๐คซ', '๐ฅด', '๐ด', '๐คฉ', '๐ฅณ', '๐', '๐ฉ', '๐คช', '๐', '๐คข', '๐', '๐น', '๐ป', '๐ค', '๐ฝ', '๐', '๐', '๐
', '๐', '๐', '๐', '๐', '๐', '๐', '๐ฎ', 'โค๏ธ', '๐', '๐', '๐', '๐', '๐ถ', '๐ฑ', '๐ญ', '๐น', '๐ฆ', '๐ป', '๐จ', '๐ฏ', '๐ฆ', '๐', '๐ฅ', '๐ง๏ธ', '๐', '๐', '๐ฅ', '๐ด', '๐', '๐บ', '๐ป', '๐ธ', '๐จ', '๐
', '๐', 'โ๏ธ', 'โ๏ธ', 'โ๏ธ', 'โ๏ธ', '๐ค๏ธ', 'โ
๏ธ', '๐ฅ๏ธ', '๐ฆ๏ธ', '๐ง๏ธ', '๐ฉ๏ธ', '๐จ๏ธ', '๐ซ๏ธ', 'โ๏ธ', '๐ฌ๏ธ', '๐จ', '๐ช๏ธ', '๐'])
for index in noise_indices:
prompt_list[index] = random.choice(noise_chars)
return "".join(prompt_list)
# Existing code...
import uuid # Import the UUID library
# Existing code...
# Existing code...
request_counter = 0 # Global counter to track requests
# Defining the image styles and default style
IMAGE_STYLES = [
"No style",
"Cinematic",
"Photographic",
"Anime",
"Manga",
"Digital Art",
"Pixel art",
"Fantasy art",
"Neonpunk",
"3D Model"
]
DEFAULT_IMAGE_STYLE = "Cinematic"
# ... (Previous code remains unchanged)
def generate_txt2img(model_interface, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7, seed=None):
if image_style == "None style":
payload = {
"inputs": prompt + ", 8k",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Cinematic":
payload = {
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
"is_negative": is_negative + ", abstract, cartoon, stylized",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Digital Art":
payload = {
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
"is_negative": is_negative + ", sharp , modern , bright",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Portrait":
payload = {
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
# ... (Previous code remains unchanged)
with gr.Blocks(css=".gradio-container {background-color: #fdf7e6;} footer{display:none !important;}",) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row(variant="compact"):
prompt = gr.Textbox(
lines=8,
label="Enter your prompt",
show_label=False,
max_lines=10,
placeholder="Full Prompt",
).style(
container=False,
textarea={'height': '400px'}
)
run = gr.Button("Generate Images").style(full_width=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
style_selection = gr.Radio(
show_label=True, container=True, interactive=True,
choices=IMAGE_STYLES,
value=DEFAULT_IMAGE_STYLE,
label='Image Style'
)
negative_prompt = gr.Textbox(label="Negative Prompt (Optional)", placeholder="Example: blurry, unfocused", lines=2)
with gr.Row():
with gr.Row():
noise_level = gr.Slider(minimum=0.0, maximum=3, step=0.1, label="Noise Level")
with gr.Row():
with gr.Row():
output1 = gr.Image(label="", show_label=False, show_share_button=False)
output2 = gr.Image(label="", show_label=False, show_share_button=False)
# Adjust the click event to use generate_txt2img function
run.click(generate_txt2img, inputs=[prompt, negative_prompt, style_selection, noise_level], outputs=[output1])
run.click(generate_txt2img, inputs=[prompt, negative_prompt, style_selection, noise_level], outputs=[output2])
demo.launch(enable_queue=True, inline=True)
|