import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM MODEL_NAME = "cloudqi/cqi_text_to_image_pt_v0" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) def generate_images(description): input_ids = tokenizer.encode(description, return_tensors="pt") # Model generates a batch of one image output = model.generate(input_ids) output_image = output[0].numpy().transpose(1,2,0) return output_image.astype("uint8") inputs = gr.inputs.Textbox(prompt="Enter Text Description") outputs = gr.outputs.Image(label="Generated Image") iface = gr.Interface(fn=generate_images, inputs=inputs, outputs=outputs, title="Description to Image") iface.disable_caching=True # Disable caching to ensure the model is reloaded each time the app is opened if __name__ == "__main__": iface.launch()