Add information text
Browse files
app.py
CHANGED
@@ -126,9 +126,24 @@ def predict_toxicity(text, model, tokenizer, device, model_name):
|
|
126 |
return prediction, inference_time
|
127 |
|
128 |
def main():
|
129 |
-
st.set_page_config(page_title="
|
130 |
-
st.title("
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
# Load models
|
133 |
hf_token = os.getenv('AT')
|
134 |
models, tokenizers, device = load_models_and_tokenizers(hf_token)
|
|
|
126 |
return prediction, inference_time
|
127 |
|
128 |
def main():
|
129 |
+
st.set_page_config(page_title="Toxicity Detector Model Comparison", layout="wide")
|
130 |
+
st.title("Toxicity Detector Model Comparison")
|
131 |
|
132 |
+
# Explanation text
|
133 |
+
st.markdown("""
|
134 |
+
### How It Works
|
135 |
+
This application compares various toxicity detection models to classify whether a given text is toxic or not. The models being compared include:
|
136 |
+
|
137 |
+
- **Tiny-Toxic-Detector**: A new 2M parameter model being released soon.
|
138 |
+
- [**Toxic-BERT**](https://huggingface.co/unitary/toxic-bert): A 109M parameter BERT-based model.
|
139 |
+
- [**RoBERTa-Toxicity-Classifier**](s-nlp/roberta_toxicity_classifier): A 124M parameter RoBERTa-based model.
|
140 |
+
- [**Toxic-Comment-Model**](https://huggingface.co/martin-ha/toxic-comment-model): A 67M parameter DistilBERT-based model.
|
141 |
+
- [**ToxicChat-T5**](https://huggingface.co/lmsys/toxicchat-t5-large-v1.0): A 738M parameter T5-based model.
|
142 |
+
|
143 |
+
Simply enter the text you want to classify, and the app will provide the predictions from each model, along with the inference time.
|
144 |
+
Please note these models are (mostly) English-only.
|
145 |
+
""")
|
146 |
+
|
147 |
# Load models
|
148 |
hf_token = os.getenv('AT')
|
149 |
models, tokenizers, device = load_models_and_tokenizers(hf_token)
|