Asssident commited on
Commit
3d42d48
·
verified ·
1 Parent(s): e72cdd7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import librosa
3
+ import numpy as np
4
+ import tensorflow as tf
5
+ from tensorflow import keras
6
+
7
+ # Load trained model
8
+ model = keras.models.load_model("engine_sound_model.h5")
9
+
10
+ # Class labels
11
+ labels = ["normal", "faulty", "background_noise", "unknown"]
12
+
13
+ def predict_engine_sound(audio_file):
14
+ y, sr = librosa.load(audio_file, sr=22050)
15
+ mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
16
+ features = np.mean(mfccs.T, axis=0)
17
+ features = np.expand_dims(features, axis=0)
18
+
19
+ prediction = model.predict(features)
20
+ return labels[np.argmax(prediction)]
21
+
22
+ # Create a Gradio interface
23
+ iface = gr.Interface(
24
+ fn=predict_engine_sound,
25
+ inputs=gr.Audio(type="filepath"),
26
+ outputs="text",
27
+ title="Engine Sound Fault Detector",
28
+ description="Upload an engine sound and the model will classify it as normal, faulty, or background noise."
29
+ )
30
+
31
+ # Launch the Gradio app
32
+ iface.launch()