File size: 15,656 Bytes
ff8f2b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb92ba2
 
ff8f2b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb92ba2
ff8f2b3
 
 
eb92ba2
 
ff8f2b3
 
 
eb92ba2
ff8f2b3
 
 
 
eb92ba2
ff8f2b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb92ba2
ff8f2b3
 
 
 
eb92ba2
 
 
ff8f2b3
 
 
 
 
 
 
 
 
 
eb92ba2
 
 
 
 
 
 
 
 
ff8f2b3
 
 
 
 
 
 
 
 
 
 
 
 
 
eb92ba2
ff8f2b3
eb92ba2
ff8f2b3
 
eb92ba2
ff8f2b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb92ba2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import json
import os
import re
import pandas as pd
import random
import warnings
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from dotenv import load_dotenv
from langchain_tavily import TavilySearch
import google.generativeai as genai
import gdown

warnings.filterwarnings("ignore")

load_dotenv()
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

user_sessions = {}
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY environment variable is required.")

genai.configure(api_key=GOOGLE_API_KEY)

# β€”β€”β€” Load or fallback LeetCode data β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1KK9Mnm15hV3ALJo-quJndftWfaujJ7K2_zHMCTo5mGE/"
FILE_ID = GOOGLE_SHEET_URL.split("/d/")[1].split("/")[0]
DOWNLOAD_URL = f"https://drive.google.com/uc?export=download&id={FILE_ID}"
OUTPUT_FILE = "leetcode_downloaded.xlsx"

try:
    print("Downloading LeetCode data...")
    gdown.download(DOWNLOAD_URL, OUTPUT_FILE, quiet=False)
    LEETCODE_DATA = pd.read_excel(OUTPUT_FILE)
    print(f"Loaded {len(LEETCODE_DATA)} problems")
except Exception:
    print("Failed to download/read. Using fallback.")
    LEETCODE_DATA = pd.DataFrame([
        {"problem_no": 3151, "problem_level": "Easy", "problem_statement": "special array",
         "problem_link": "https://leetcode.com/problems/special-array-i/?envType=daily-question&envId=2025-06-01"},
        {"problem_no": 1752, "problem_level": "Easy", "problem_statement": "check if array is sorted and rotated",
         "problem_link": "https://leetcode.com/problems/check-if-array-is-sorted-and-rotated/?envType=daily-question&envId=2025-06-01"},
        {"problem_no": 3105, "problem_level": "Easy", "problem_statement": "longest strictly increasing or strictly decreasing subarray",
         "problem_link": "https://leetcode.com/problems/longest-strictly-increasing-or-strictly-decreasing-subarray/?envType=daily-question&envId=2025-06-01"},
        {"problem_no": 1, "problem_level": "Easy", "problem_statement": "two sum",
         "problem_link": "https://leetcode.com/problems/two-sum/"},
        {"problem_no": 2, "problem_level": "Medium", "problem_statement": "add two numbers",
         "problem_link": "https://leetcode.com/problems/add-two-numbers/"},
        {"problem_no": 3, "problem_level": "Medium", "problem_statement": "longest substring without repeating characters",
         "problem_link": "https://leetcode.com/problems/longest-substring-without-repeating-characters/"},
        {"problem_no": 4, "problem_level": "Hard", "problem_statement": "median of two sorted arrays",
         "problem_link": "https://leetcode.com/problems/median-of-two-sorted-arrays/"},
        {"problem_no": 5, "problem_level": "Medium", "problem_statement": "longest palindromic substring",
         "problem_link": "https://leetcode.com/problems/longest-palindromic-substring/"}
    ])

# β€”β€”β€” Helpers & Tools β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

QUESTION_TYPE_MAPPING = {
    "easy": "Easy", "Easy": "Easy",
    "medium": "Medium", "Medium": "Medium",
    "hard": "Hard", "Hard": "Hard"
}

def preprocess_query(query: str) -> str:
    for k, v in QUESTION_TYPE_MAPPING.items():
        query = re.sub(rf'\b{k}\b', v, query, flags=re.IGNORECASE)
    query = re.sub(r'\bproblem\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE)
    query = re.sub(r'\bquestion\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE)
    query = re.sub(r'\b(find|search)\s+interview\s+questions\s+for\s+', '', query, flags=re.IGNORECASE)
    query = re.sub(r'\binterview\s+questions\b', '', query, flags=re.IGNORECASE).strip()
    return query

def get_daily_coding_question(query: str = "") -> dict:
    try:
        response = "**Daily Coding Questions**\n\n"
        
        m = re.search(r'Problem_(\d+)', query, re.IGNORECASE)
        if m:
            df = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == int(m.group(1))]
            if not df.empty:
                p = df.iloc[0]
                response += (
                    f"**Problem {p['problem_no']}**\n"
                    f"Level: {p['problem_level']}\n"
                    f"Statement: {p['problem_statement']}\n"
                    f"Link: {p['problem_link']}\n\n"
                )
                return {"status": "success", "response": response}
            else:
                return {"status": "error", "response": "Problem not found"}
        
        if query.strip():
            df = LEETCODE_DATA[LEETCODE_DATA['problem_statement'].str.contains(query, case=False, na=False)]
        else:
            df = LEETCODE_DATA

        easy_questions = df[df['problem_level'] == 'Easy'].sample(min(3, len(df[df['problem_level'] == 'Easy'])))
        medium_questions = df[df['problem_level'] == 'Medium'].sample(min(1, len(df[df['problem_level'] == 'Medium'])))
        hard_questions = df[df['problem_level'] == 'Hard'].sample(min(1, len(df[df['problem_level'] == 'Hard'])))

        response += "**Easy Questions**\n"
        for i, p in enumerate(easy_questions.itertuples(), 1):
            response += (
                f"{i}. Problem {p.problem_no}: {p.problem_statement}\n"
                f"   Level: {p.problem_level}\n"
                f"   Link: {p.problem_link}\n\n"
            )

        response += "**Medium Question**\n"
        for p in medium_questions.itertuples():
            response += (
                f"Problem {p.problem_no}: {p.problem_statement}\n"
                f"Level: {p.problem_level}\n"
                f"Link: {p.problem_link}\n\n"
            )

        response += "**Hard Question**\n"
        for p in hard_questions.itertuples():
            response += (
                f"Problem {p.problem_no}: {p.problem_statement}\n"
                f"Level: {p.problem_level}\n"
                f"Link: {p.problem_link}\n"
            )

        return {"status": "success", "response": response}
    except Exception as e:
        return {"status": "error", "response": f"Error: {e}"}

def fetch_interview_questions(query: str) -> dict:
    if not TAVILY_API_KEY:
        return {"status": "error", "response": "Tavily API key not configured"}
    
    if not query.strip() or query.lower() in ["a", "interview", "question", "questions"]:
        return {"status": "error", "response": "Please provide a specific topic for interview questions (e.g., 'Python', 'data structures', 'system design')."}
    
    try:
        tavily = TavilySearch(api_key=TAVILY_API_KEY, max_results=5)
        search_query = f"{query} interview questions -inurl:(signup | login)"
        print(f"Executing Tavily search for: {search_query}")
        
        results = tavily.invoke(search_query)
        print(f"Raw Tavily results: {results}")
        
        if not results or not isinstance(results, list) or len(results) == 0:
            return {"status": "success", "response": "No relevant interview questions found. Try a more specific topic or different keywords."}
        
        resp = "**Interview Questions Search Results for '{}':**\n\n".format(query)
        for i, r in enumerate(results, 1):
            if isinstance(r, dict):
                title = r.get('title', 'No title')
                url = r.get('url', 'No URL')
                content = r.get('content', '')
                content = content[:200] + '…' if len(content) > 200 else content or "No preview available"
                resp += f"{i}. **{title}**\n   URL: {url}\n   Preview: {content}\n\n"
            else:
                resp += f"{i}. {str(r)[:200]}{'…' if len(str(r)) > 200 else ''}\n\n"
        
        return {"status": "success", "response": resp}
    
    except Exception as e:
        print(f"Tavily search failed: {str(e)}")
        return {"status": "error", "response": f"Search failed: {str(e)}"}

def simulate_mock_interview(query: str, user_id: str = "default") -> dict:
    qtype = "mixed"
    if re.search(r'HR|Behavioral|hr|behavioral', query, re.IGNORECASE): qtype = "HR"
    if re.search(r'Technical|System Design|technical|coding', query, re.IGNORECASE): qtype = "Technical"
    
    if "interview question" in query.lower() and qtype == "mixed":
        qtype = "HR"
    
    if qtype == "HR":
        hr_questions = [
            "Tell me about yourself.",
            "What is your greatest weakness?",
            "Describe a challenge you overcame.",
            "Why do you want to work here?",
            "Where do you see yourself in 5 years?",
            "Why are you leaving your current job?",
            "Describe a time when you had to work with a difficult team member.",
            "What are your salary expectations?",
            "Tell me about a time you failed.",
            "What motivates you?",
            "How do you handle stress and pressure?",
            "Describe your leadership style."
        ]
        q = random.choice(hr_questions)
        return {"status": "success", "response": (
            f"**Mock Interview (HR/Behavioral)**\n\n**Question:** {q}\n\nπŸ’‘ **Tips:**\n"
            f"- Use the STAR method (Situation, Task, Action, Result)\n"
            f"- Provide specific examples from your experience\n"
            f"- Keep your answer concise but detailed\n\n**Your turn to answer!**"
        )}
    else:
        p = LEETCODE_DATA.sample(1).iloc[0]
        return {"status": "success", "response": (
            f"**Mock Interview (Technical)**\n\n**Problem:** {p['problem_statement'].title()}\n"
            f"**Difficulty:** {p['problem_level']}\n**Link:** {p['problem_link']}\n\nπŸ’‘ **Tips:**\n"
            f"- Think out loud as you solve\n"
            f"- Ask clarifying questions\n"
            f"- Discuss time/space complexity\n\n**Explain your approach!**"
        )}

# β€”β€”β€” The Enhanced InterviewPrepAgent β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

class InterviewPrepAgent:
    def __init__(self):
        self.model = genai.GenerativeModel('gemini-1.5-flash')
        self.tools = {
            "get_daily_coding_question": get_daily_coding_question,
            "fetch_interview_questions": fetch_interview_questions,
            "simulate_mock_interview": simulate_mock_interview
        }
        self.instruction_text = """
You are an interview preparation assistant. Analyze the user's query and determine which tool to use.

Available tools:
1. get_daily_coding_question - For coding practice, LeetCode problems, daily questions
2. fetch_interview_questions - For searching interview questions on specific topics
3. simulate_mock_interview - For mock interview practice (HR/behavioral or technical)

Instructions:
- If user asks for coding questions, daily questions, LeetCode problems, practice problems -> use get_daily_coding_question
- If user asks for interview questions on specific topics (e.g., Python, data structures) without "mock" or "simulate" -> use fetch_interview_questions
- If user asks for mock interview, interview simulation, practice interview, or HR/behavioral questions -> use simulate_mock_interview
- If user explicitly mentions "HR" or "behavioral" -> use simulate_mock_interview with HR focus

Respond ONLY with valid JSON in this exact format:
{"tool": "tool_name", "args": {"param1": "value1", "param2": "value2"}}

User Query: {query}
"""

    def _classify_intent(self, query: str) -> tuple[str, dict]:
        query_lower = query.lower()
        
        # Prioritize HR/behavioral for explicit mentions
        if any(keyword in query_lower for keyword in ["hr", "behavioral", "give hr questions", "give behavioral questions"]):
            return "simulate_mock_interview", {"query": query, "user_id": "default"}
        
        # Handle mock interview or simulation requests
        if any(keyword in query_lower for keyword in ["mock interview", "practice interview", "interview simulation", "simulate_mock_interview"]):
            return "simulate_mock_interview", {"query": query, "user_id": "default"}
        
        # Handle coding-related queries
        if any(keyword in query_lower for keyword in ["daily", "coding question", "leetcode", "practice problem", "coding practice"]):
            problem_match = re.search(r'problem\s*(\d+)', query_lower)
            if problem_match:
                return "get_daily_coding_question", {"query": f"Problem_{problem_match.group(1)}"}
            
            if "easy" in query_lower:
                return "get_daily_coding_question", {"query": "Easy"}
            elif "medium" in query_lower:
                return "get_daily_coding_question", {"query": "Medium"}
            elif "hard" in query_lower:
                return "get_daily_coding_question", {"query": "Hard"}
            
            return "get_daily_coding_question", {"query": ""}
        
        # Handle topic-specific interview questions
        if any(keyword in query_lower for keyword in ["search interview questions", "find interview questions", "interview prep resources"]) or \
           "interview" in query_lower:
            return "fetch_interview_questions", {"query": query}
        
        # Fallback to LLM classification
        try:
            prompt = self.instruction_text.format(query=query)
            response = self.model.generate_content(prompt)
            result = json.loads(response.text.strip())
            tool_name = result.get("tool")
            args = result.get("args", {})
            return tool_name, args
        except Exception as e:
            print(f"LLM classification failed: {e}")
            return "get_daily_coding_question", {"query": ""}

    def process_query(self, query: str, user_id: str, session_id: str) -> str:
        if not GOOGLE_API_KEY:
            return "Error: Google API not configured."
        
        session_key = f"{user_id}_{session_id}"
        user_sessions.setdefault(session_key, {"history": []})

        tool_name, args = self._classify_intent(query)
        
        if tool_name not in self.tools:
            return f"I couldn't understand your request. Please try asking for:\n- Daily coding question\n- Mock interview\n- Interview questions for a specific topic"

        result = self.tools[tool_name](**args)
        
        user_sessions[session_key]["history"].append({
            "query": query, 
            "response": result["response"]
        })
        
        return result["response"]

# β€”β€”β€” FastAPI Setup β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

app = FastAPI(title="Interview Prep API", version="2.0.0")
agent = InterviewPrepAgent()

class ChatRequest(BaseModel):
    user_id: str
    session_id: str
    question: str

class ChatResponse(BaseModel):
    session_id: str
    answer: str

@app.post("/chat", response_model=ChatResponse)
async def chat(req: ChatRequest):
    q = preprocess_query(req.question)
    ans = agent.process_query(q, req.user_id, req.session_id)
    return ChatResponse(session_id=req.session_id, answer=ans)

@app.get("/healthz")
def health():
    status = {"status": "ok", "google_api": bool(GOOGLE_API_KEY),
              "leetcode_count": len(LEETCODE_DATA),
              "tavily": bool(TAVILY_API_KEY)}
    return status

@app.get("/")
def root():
    return {"message": "Interview Prep API v2", "endpoints": ["/chat", "/healthz"]}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)